CoDAS
https://codas.org.br/article/doi/10.1590/2317-1782/20242023224pt
CoDAS
Original Article

Efeitos imediatos da fotobiomodulação na produção de saliva

Immediate effects of photobiomodulation on saliva production

Amanda Rentero Gimenez do Amaral Silva; Lucas de Oliveira Cunha; Déborah Carollina Costa Silva; Vanessa Mouffron Novaes; Aline Mansueto Mourão; Laélia Cristina Caseiro Vicente

Downloads: 2
Views: 375

Resumo

RESUMO: Objetivo: Verificar os efeitos imediatos da fotobiomodulação na produção do fluxo salivar e a correlação dos dados demográficos, antropométricos e de uso de medicamentos.

Método: Participaram do estudo 100 indivíduos saudáveis, com idade entre 18 e 76 anos (média 27,2 anos), divididos de forma randomizada em grupo experimental e grupo placebo. Foram realizadas as avaliações das medidas antropométricas, autopercepção da produção de saliva e a sialometria. Na sequência, realizou-se a irradiação do LASER no comprimento de onda infravermelho (808 nanômetros) com 100 miliwatts (mw) de potência em cinco pontos intraorais: nas glândulas sublingual e bilateralmente nas submandibulares e parótidas, nas doses 9, 18 e 24 joules (J). A sialometria foi repetida após cada aplicação. O grupo controle recebeu os mesmos procedimentos com equipamento placebo.

Resultados: Houve associação estatística na autopercepção de redução da saliva no grupo experimental para a dose de 24J e na sialometria e na redução do fluxo salivar para as doses 18J e 24J e aumento para 9J, em ambos os grupos. Não houve associação quando comparado entre os grupos experimental e placebo. A análise de regressão multinomial múltipla revelou que a redução ou o aumento do fluxo salivar independe das variáveis demográficas, antropométricas e uso de medicamentos.

Conclusão: A ação bioinibitória da fotobiomodulação sobre as glândulas salivares saudáveis ocorreu em dose de 18J e 24J, já ação bioestimulante na dose 9J, independe das variáveis demográficas, antropométricas e uso de medicamentos. A autopercepção da redução do fluxo salivar ocorreu em 24J.

Palavras-chave

Glândulas Salivares, Saliva, Sialorreia, Xerostomia, Terapia com Luz de Baixa Intensidade, Percepção

Abstract

Purpose: To verify the immediate effects of photobiomodulation on the production of salivary flow and the correlation of demographic, anthropometric and medication use data.

Methods: The study included 100 healthy individuals, aged between 18 and 76 years (mean 27.2 years), randomly split into an experimental group and a placebo group. Assessments of anthropometric measurements, self-perception of saliva production and sialometry were performed. Next, LASER irradiation was carried out at an infrared wavelength (808 nanometers) with 100 milliwatts (mw) of power at five intraoral points: on the sublingual glands and bilaterally on the submandibular and parotid glands, at doses of 9, 18 and 24 joules (J). Sialometry was repeated after each application. The control group received the same procedures with placebo equipment.

Results: There was a statistical association in the self-perception of reduced saliva in the experimental group for the 24J dose and in sialometry and in the reduction in salivary flow for the 18J and 24J doses and an increase to 9J, in both groups. There was no association when comparing the experimental and placebo groups. Multiple multinomial regression analysis revealed that the reduction or increase in salivary flow is independent of demographic, anthropometric and medication use variables.

Conclusion: The bioinhibitory action of photobiomodulation on healthy salivary glands occurred at a dose of 18J and 24J, while the biostimulant action happened at a dose of 9J, regardless of demographic, anthropometric variables and medication use. The self-perception of reduced salivary flow occurred at 24J

Keywords

Salivary Glands; Saliva; Sialorrhea; Xerostomia; Low-level Light Therapy; Perception

Referencias

1 Alves VMN, Furlan RMMM, Motta AR. Laserterapia em motricidade orofacial. In: Silva HJ, Tessitore A, Motta AR, Cunha DA, Berretin-Felix G, Marchesan IQ, editors. Tratado de motricidade orofacial. São Paulo: Pulso Editorial; 2019. p. 825-34.

2 Brzak LB, Cigić L, Baričević M, Sabol I, Mravak-Stipetić M, Risović D. Different protocols of photobiomodulation therapy of hyposalivation. Photomed Laser Surg. 2018;36(2):78-82. http://doi.org/10.1089/pho.2017.4325. PMid:29022754.

3 Loncar B, Stipetic MM, Baricevic M, Risovic D. The effect of low-laser therapy on salivary glands in patients with xerostomia. Photomed Laser Surg. 2011;29(3):171-5. http://doi.org/10.1089/pho.2010.2792. PMid:21054200.

4 Saleh J, Figueiredo MAZ, Cherubini K, Braga A, Salum FG. Effect of low-level laser therapy on radiotherapy-induced hyposalivation and xerostomia: a pilot study. Photomed Laser Surg. 2014;32(10):546-52. http://doi.org/10.1089/pho.2014.3741. PMid:25302460.

5 Zecha JA, Raber-Durlacher JE, Nair RG, Epstein JB, Elad S, Hamblin MR, et al. Low-level laser therapy/photobiomodulation in the management of side effects of chemoradiation therapy in head and neck cancer: Part 2 proposed applications and treatment protocols. Support Care Cancer. 2016;24(6):2793-805. http://doi.org/10.1007/s00520-016-3153-y. PMid:26984249.

6 Sousa ASSJ, Pavesi VCS, Carvalho NA, Ribeiro-Júnior O. Photobiomodulation and salivary glands: a systematic review. Lasers Med Sci. 2020;35(4):777-88. http://doi.org/10.1007/s10103-019-02914-1. PMid:31768691.

7 Steffen A, Rohrbach-Volland S. Functional Hypersalivation in children and adults - therapy under consideration of recent guideline. Laryngorhinootologie. 2021;100(5):402-12. http://doi.org/10.1055/a-1355-7642. PMid:33915594.

8 Speyer R, Cordier R, Kim JH, Cocks N, Michou E, Wilkes-Gillan S. Prevalência de problemas de salivação, deglutição e alimentação na paralisia cerebral ao longo da vida: uma revisão sistemática e metanálises. Dev Med Child Neurol. 2019;61(11):1249-58. http://doi.org/10.1111/dmcn.14316. PMid:31328797.

9 Caneshi WF, Paiva CCAN, Frade FL, Motta AR. Use of elastic bandage associated with speech therapy in the control ofsialorrhea (hypersalivation). Rev CEFAC. 2014;16(5):1558-66. http://doi.org/10.1590/1982-021620149813.

10 Paim ED, Barbert MCB, Zanella VG, Martins VB, Macagnan FE. Effects of transcutaneous electrical nerve stimulation on the salivary flow of patients with hyposalivation induced by radiotherapy in the head and neck region: a randomised clinical trial. J Oral Rehabil. 2019;46(12):1142-50. http://doi.org/10.1111/joor.12851. PMid:31251407.

11 Franck JB, Fernandes RCL, Costa FHR, Rosso ALZ. Toxina botulínica para tratamento da sialorreia dos pacientes com doença de Parkinson. Rev Bras Neurol. 2018;54(3):16-21.

12 Mubaslat O, Lambert T. The effect of sublingual atropine sulfate on clozapine-induced hypersalivation: a multicentre, randomised placebo-controlled trial. Psychopharmacology (Berl). 2020;237(10):2905-15. http://doi.org/10.1007/s00213-020-05627-4. PMid:32876732.

13 Weikamp JG, Schinagl DA, Verstappen CC, Schelhaas HJ, de Swart BJ, Kalf JG. Botulinum toxin: a injections vs radiotherapy for drooling in ALS. Acta Neurol Scand. 2016;134(3):224-31. http://doi.org/10.1111/ane.12559. PMid:26803950.

14 Reid SM, Westbury C, Chong D, Johnstone BR, Guzys A, Reddihough DS. Long-term impact of saliva control surgery in children with disability. J Plast Reconstr Aesthet Surg. 2019;72(7):1193-7. http://doi.org/10.1016/j.bjps.2019.02.020. PMid:30885525.

15 Correia PRB, Coelho JF, Freire MLJ, Almeida LNA, Pernambuco LA, Alves GAS. Photobiomodulation in speech-language-hearing therapy: a profile of professional practice and the level of information of Brazilian speech-language-hearing therapists. Rev CEFAC. 2021;23(3):e12920. http://doi.org/10.1590/1982-0216/202123312920.

16 Huang YY, Chen AC, Carroll JD, Hamblin MR. Biphasic dose response in low level light therapy. Dose Response. 2009;7(4):358-83. http://doi.org/10.2203/dose-response.09-027.Hamblin. PMid:20011653.

17 Conceição MD, Marocchio LS, Fagundes RL. Técnica de Sialometria para o uso na prática clínica diária. Rev Assoc Paul Cir Dent. 2006;60:350-4.

18 Mukaka MM. Statistics Corner: a guide to appropriate use of Correlation coefficient in medical research. Malawi Med J. 2012;24(3):69-71. PMid:23638278.

19 Golež A, Frangež I, Cankar K, Frangež HB, Ovsenik M, Nemeth L. Effects of low-level light therapy on xerostomia related to hyposalivation: a systematic review and meta-analysis of clinical trials. Lasers Med Sci. 2022;37(2):745-58. http://doi.org/10.1007/s10103-021-03392-0. PMid:34409539.

20 Loncar-Brzak B, Cigić L, Baričević M, Sabol I, Mravak-Stipetić M, Risović D. Different protocols of photobiomodulation therapy of hyposalivation. Photomed Laser Surg. 2018;36(2):78-82. http://doi.org/10.1089/pho.2017.4325. PMid:29022754.

21 Silva DFT, Lopes LA, Ribeiro MS. Conceitos físicos básicos aplicados à terapia laser de baixa potência. In: Silvia CN, Aguinaldo SGS, Ribeiro MS, editors. Laser de baixa potência: princípios básicos e aplicações clínicas na odontologia. Rio de Janeiro: Elsevier; 2021. p. 1-13.

22 Lopes CDO, Rigau I, Mas J, Zângaro RA. Low level laser therapy in the prevention of radiotherapy-induced xerostomia and oral mucositis. Radiol Bras. 2006;39(2):131-6. http://doi.org/10.1590/S0100-39842006000200012.

23 Terlević Dabić D, Jurišić S, Vučićević Boras V, Gabrić D, Bago I, Vrdoljak DV. The effectiveness of low-level laser therapy in patients with drug-induced hyposalivation: a pilot study. Photomed Laser Surg. 2016;34(9):389-93. http://doi.org/10.1089/pho.2016.4109. PMid:27415181.

24 Gonnelli FA, Palma LP, Giordani AJ, Deboni ALS, Dias RS, Segreto RA, et al. Low-level laser therapy for the prevention of low salivary flow rate after radiotherapy and chemotherapy in patients with head and neck cancer. Radiol Bras. 2016;49(2):86-91. http://doi.org/10.1590/0100-3984.2014.0144. PMid:27141130.

25 Oton-Leite AF, Corrêa de Castro AC, Morais MO, Pinezi JCD, Leles CR, Mendonça EF. Effect of intraoral low-level laser therapy on quality of life of patients with head and neck cancer undergoing radiotherapy. Head Neck. 2012;34(3):398-404. http://doi.org/10.1002/hed.21737. PMid:21472883.

26 Hamblin MR. Mechanisms and mitochondrial redox signaling in photobiomodulation. Photochem Photobiol. 2018;94(2):199-212. http://doi.org/10.1111/php.12864. PMid:29164625.

27 Ramírez Martínez-Acitores L, Hernández Ruiz de Azcárate F, Casañas E, Serrano J, Hernández G, López-Pintor RM. Xerostomia and Aalivary flow in patients taking antihypertensive drugs. Int J Environ Res Public Health. 2020;17(7):2478. http://doi.org/10.3390/ijerph17072478. PMid:32260482.
 


Submitted date:
04/09/2023

Accepted date:
28/09/2023

6657a35aa953957340114975 codas Articles

CoDAS

Share this page
Page Sections