CoDAS
https://codas.org.br/article/doi/10.1590/2317-1782/20242023203en
CoDAS
Artigo Original

Relationship between bite force, occlusal contact area, and three-dimensional facial soft tissue in dentofacial deformities

Joana Carolina Martins Simões; Denny Marcos Garcia; Francisco Veríssimo De Mello-Filho; Claudia Maria De Felício; Luciana Vitaliano Voi Trawitzki

Downloads: 0
Views: 357

Abstract

ABSTRACT: Purpose: This study aimed to investigate three-dimensional facial soft tissue dimensions, maximum bite force (MBF), and occlusal contact area in patients with DFD. In addition, we analyzed the relationship between MBF and the three-dimensional facial measurements.

Methods: Thirty-two patients with skeletal Class III DFD and 20 patients with Class II DFD underwent a soft tissue evaluation using surface laser scanning, as well as MBF and occlusal contact area assessments. The DFD groups were compared with each other and with 25 healthy subjects.

Results: Significant morphological differences were found in the transversal, vertical, and anteroposterior dimensions between Class II DFD and Class III DFD. Both DFD groups presented an increased linear distance of chin height, which was strongly related with decreased MBF magnitude. The DFD groups exhibited lower MBF and occlusal contact area, with no significant differences between Class II and Class III DFD.

Conclusion: The presence of DFD affected 3D measurements of facial soft tissue, causing variations beyond normal limits, lower MBF, and occlusal contact area in both Class II and Class III DFD patients. The vertical dimension might have influenced the lower MBF magnitude in the studied skeletal deformities.

Keywords

Dentofacial Deformities, Orthognathic Surgery, Three-dimensional Imaging, Bite Force, Mastication, Stomatognathic System, Myofunctional Therapy

Referências

1 AAOMS: American Association of Oral and Maxillofacial Surgeons. Clinical paper – Criteria for Orthognathic Surgery [Internet]. USA: AAOMS; 2020 [cited 2023 Aug 22]. Available from: https://www.aaoms.org/docs/practice_resources/clinical_resources/ortho_criteria.pdf

2 Iwase M, Ohashi M, Tachibana H, Toyoshima T, Nagumo M. Bite force, occlusal contact area and masticatory efficiency before and after orthognathic surgical correction of mandibular prognathism. Int J Oral Maxillofac Surg. 2006;35(12):1102-7. http://dx.doi.org/10.1016/j.ijom.2006.08.014. PMid:17097270.

3 Islam I, Lim AAT, Wong RCW. Changes in bite force after orthognathic surgical correction of mandibular prognathism: a systematic review. Int J Oral Maxillofac Implants. 2017;46(6):746-55. http://dx.doi.org/10.1016/j.ijom.2017.01.012. PMid:28209396.

4 Trawitzki LVV, Silva JB, Regalo SC, Mello-Filho FV. Effect of class II and class III dentofacial deformities under orthodontic treatment on maximal isometric bite force. Arch Oral Biol. 2011;56(10):972-6. http://dx.doi.org/10.1016/j.archoralbio.2011.02.018. PMid:21440242.

5 Ueki K, Yoshizawa K, Moroi A, Tsutsui T, Hotta A, Hiraide R, et al. Relationship between occlusal force and condylar morphology in class II and III after bi-maxillary osteotomy. J Craniomaxillofac Surg. 2018;46(12):2103-7. http://dx.doi.org/10.1016/j.jcms.2018.10.010. PMid:30420148.

6 Staudt CB, Kiliaridis S. A nonradiographic approach to detect Class III skeletal discrepancies. Am J Orthod Dentofacial Orthop. 2009;136(1):52-8. http://dx.doi.org/10.1016/j.ajodo.2007.07.025. PMid:19577148.

7 Kim KA, Chang YJ, Lee SH, An HJ, Park KH. Three-dimensional soft tissue changes according to skeletal changes after mandibular setback surgery by using cone-beam computed tomography and a structured light scanner. Prog Orthod. 2019;20(1):25. http://dx.doi.org/10.1186/s40510-019-0282-0. PMid:31257550.

8 van Spronsen PH. Long-face craniofacial morphology: cause or effect of weak masticatory musculature? Semin Orthod. 2010;16(2):99-117. http://dx.doi.org/10.1053/j.sodo.2010.02.001.

9 Proffit WR, Fields HW, Nixon WL. Occlusal forces in normal- and long-face adults. J Dent Res. 1983;62(5):566-70. http://dx.doi.org/10.1177/00220345830620051201. PMid:6573373.

10 Throckmorton GS, Ellis E 3rd, Buschang PH. Morphologic and biomechanical correlates with maximum bite forces in orthognathic surgery patients. J Oral Maxillofac Surg. 2000;58(5):515-24. http://dx.doi.org/10.1016/S0278-2391(00)90014-4. PMid:10800907.

11 Zarrinkelk HM, Throckmorton GS, Ellis E 3rd, Sinn DP. Functional and morphologic changes after combined maxillary intrusion and mandibular advancement surgery. J Oral Maxillofac Surg. 1996;54(7):828-37. http://dx.doi.org/10.1016/S0278-2391(96)90530-3. PMid:8676227.

12 Shimomatsu K, Nozoe E, Ishihata K, Okawachi T, Nakamura N. Three-dimensional analyses of facial soft tissue configuration of Japanese females with jaw deformity--a trial of polygonal view of facial soft tissue deformity in orthognathic patients. J Craniomaxillofac Surg. 2012;40(7):559-67. http://dx.doi.org/10.1016/j.jcms.2011.10.009. PMid:22078498.

13 Johal A, Chaggar A, Zou LF. A three-dimensional soft tissue analysis of Class III malocclusion: a case-controlled cross-sectional study. J Orthod. 2018;45(1):16-22. http://dx.doi.org/10.1080/14653125.2017.1331893. PMid:28678642.

14 De Felício CM, Medeiros AP, de Oliveira Melchior M. Validity of the ‘protocol of oro-facial myofunctional evaluation with scores’ for young and adult subjects. J Oral Rehabil. 2012;39(10):744-53. http://dx.doi.org/10.1111/j.1365-2842.2012.02336.x. PMid:22852833.

15 De Felício CM, Melchior MO, Da Silva MA. Clinical validity of the protocol for multi-professional centers for the determination of signs and symptoms of temporomandibular disorders. Part II. Cranio. 2009;27(1):62-7. http://dx.doi.org/10.1179/crn.2009.010. PMid:19241801.

16 Lippold C, Liu X, Wangdo K, Drerup B, Schreiber K, Kirschneck C, et al. Facial landmark localization by curvature maps and profile analysis. Head Face Med. 2014;10(1):54. http://dx.doi.org/10.1186/1746-160X-10-54. PMid:25488063.

17 Farkas LG, Deutsch CK. Anthropometric determination of craniofacial morphology. Am J Med Genet. 1996;65(1):1-4. http://dx.doi.org/10.1002/ajmg.1320650102. PMid:8914733.

18 Giglio LD, Felício CM, Trawitzki LVV. Orofacial functions and forces in male and female healthy young and adults. CoDAS. 2020;32(5):e20190045. http://dx.doi.org/10.1590/2317-1782/20192019045. PMid:33174985.

19 Naeije M, McCarroll RS, Weijs WA. Electromyographic activity of the human masticatory muscles during submaximal clenching in the inter-cuspal position. J Oral Rehabil. 1989;16(1):63-70. http://dx.doi.org/10.1111/j.1365-2842.1989.tb01318.x. PMid:2746406.

20 Tomczak M, Tomczak E. The need to report effect size estimates revisited. An overview of some recommended measures of effect size. Trends Sport Sci. 2014;1(21):19-25.

21 Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. New York: Academic Press; 1988.

22 Ferguson CJ. An effect size primer: a guide for clinicians and researchers. Prof Psychol Res Pr. 2009;40(5):532-8. http://dx.doi.org/10.1037/a0015808.

23 Ulijaszek SJ, Kerr DA. Anthropometric measurement error and the assessment of nutritional status. Br J Nutr. 1999;82(3):165-77. http://dx.doi.org/10.1017/S0007114599001348. PMid:10655963.

24 Lin LI. A concordance correlation coefficient to evaluate reproducibility. Biometrics. 1989;45(1):255-68. http://dx.doi.org/10.2307/2532051. PMid:2720055.

25 Fourie Z, Damstra J, Gerrits PO, Ren Y. Evaluation of anthropometric accuracy and reliability using different three-dimensional scanning systems. Forensic Sci Int. 2011;207(1-3):127-34. http://dx.doi.org/10.1016/j.forsciint.2010.09.018. PMid:20951517.

26 Moss JP, McCance AM, Fright WR, Linney AD, James DR. A three-dimensional soft tissue analysis of fifteen patients with Class II, Division 1 malocclusions after bimaxillary surgery. Am J Orthod Dentofacial Orthop. 1994;105(5):430-7. http://dx.doi.org/10.1016/S0889-5406(94)70002-8. PMid:8166091.

27 Sforza C, Peretta R, Grandi G, Ferronato G, Ferrario VF. Three-dimensional facial morphometry in skeletal Class III patients. A non-invasive study of soft-tissue changes before and after orthognathic surgery. Br J Oral Maxillofac Surg. 2007;45(2):138-44. http://dx.doi.org/10.1016/j.bjoms.2005.12.013. PMid:16483700.

28 Ellis E 3rd, McNamara JA Jr. Components of adult Class III malocclusion. J Oral Maxillofac Surg. 1984;42(5):295-305. http://dx.doi.org/10.1016/0278-2391(84)90109-5. PMid:6585502.

29 Hunt N, Shah R, Sinanan A, Lewis M. Northcroft Memorial Lecture 2005: Muscling in on malocclusions: Current concepts on the role of muscles in the aetiology and treatment of malocclusion. J Orthod. 2006;33(3):187-97. http://dx.doi.org/10.1179/146531205225021660. PMid:16926312.

30 Kim TH, Kim CH. Correlation between mandibular morphology and masticatory muscle thickness in normal occlusion and mandibular prognathism. J Korean Assoc Oral Maxillofac Surg. 2020;46(5):313-20. http://dx.doi.org/10.5125/jkaoms.2020.46.5.313. PMid:33122455.

31 Raadsheer MC, van Eijden TM, van Ginkel FC, Prahl-Andersen B. Contribution of jaw muscle size and craniofacial morphology to human bite force magnitude. J Dent Res. 1999;78(1):31-42. http://dx.doi.org/10.1177/00220345990780010301. PMid:10065943.

32 Picinato-Pirola MN, Mestriner W Jr, Freitas O, Mello-Filho FV, Trawitzki LV. Masticatory efficiency in class II and class III dentofacial deformities. Int J Oral Maxillofac Implants. 2012;41(7):830-4. http://dx.doi.org/10.1016/j.ijom.2012.03.025. PMid:22551648.
 


Submetido em:
22/08/2023

Aceito em:
10/10/2023

66579ec1a9539571bc165fe3 codas Articles

CoDAS

Share this page
Page Sections