CoDAS
https://codas.org.br/article/doi/10.1590/2317-1782/20242022330en
CoDAS
Artigo Original

Towards a better diagnosis of mouth breathing: validity and reliability of a protocol for assessing the awake breathing pattern in preschool children

Morgane Warnier; Léonor Piron; Dominique Morsomme; Christelle Maillart

Downloads: 0
Views: 389

Abstract

Abstract: Purpose: The Awake Breathing Pattern Assessment (ABPA) is a prototypical clinical grid recently designed through an international consensus of Speech and Language Pathologists (SLPs) to categorize the awake and habitual breathing pattern during the orofacial myofunctional assessment. This cross-sectional study aims to explore the psychometric properties of the ABPA in a preschool population.

Methods: 133 children from 2;11 to 6 years old were assessed with the ABPA. The percentage of time spent breathing through the mouth was objectively measured by a CO2 sensor and used as a baseline measurement. We first performed a multivariate Latent Profile Analysis based on the CO2 measurement and a parental questionnaire to define the number of categories that best characterize the breathing pattern. Subsequently, we assessed the intra- and inter-rater reliability, internal consistency criterion validity, construct validity and sensitivity and specificity.

Results: The awake breathing pattern can best be described by two groups: nasal and mouth breathing. The ABPA, initially designed in three groups, was adjusted accordingly. This final version showed excellent intra-rater and inter-rater reliability. There was a significant correlation between the ABPA and the CO2 measurement. The ABPA showed a fair sensitivity and a good specificity.

Conclusion: The reference tool based on CO2 data was used in children for the first time and was found to be reliable. The ABPA is a suitable tool for SLPs to confirm the diagnosis of mouth breathing in preschool children if more sensitive screening tools, like parental questionnaires, are used beforehand.

Keywords

Children: Preschool, Mouth Breathing, Assessment, Diagnosis, Speech Language Pathology, Psychometrics

Referências

1 Torre C, Guilleminault C. Establishment of nasal breathing should be the ultimate goal to secure adequate craniofacial and airway development in children. J Pediatr (Rio J). 2018;94(2):101-3. http://dx.doi.org/10.1016/j.jped.2017.08.002. PMid:28859912.

2 Bokov P, Dahan J, Boujemla I, Dudoignon B, André C-V, Bennaceur S, et al. Prevalence of mouth breathing, with or without nasal obstruction, in children with moderate to severe obstructive sleep apnea. Sleep Med. 2022;98:98-105. http://dx.doi.org/10.1016/j.sleep.2022.06.021. PMid:35803117.

3 de Lima ACD, da Cunha DA, Albuquerque RC, Costa RNA, da Silva HJ. Sensory changes in mouth breathers: systematic review based on the prisma method. Rev Paul Pediatr. 2019;37(1):97-103. http://dx.doi.org/10.1590/1984-0462/;2019;37;1;00012. PMid:30110113.

4 Guilleminault C, Sullivan SS, Huang YS. Sleep-disordered breathing, orofacial growth, and prevention of obstructive sleep apnea. Sleep Med Clin. 2019;14(1):13-20. http://dx.doi.org/10.1016/j.jsmc.2018.11.002. PMid:30709527.

5 Fujimoto S, Yamaguchi K, Gunjigake K. Clinical estimation of mouth breathing. Am J Orthod Dentofacial Orthop. 2009;136(5):630.e1-7, discussion 630-1. http://dx.doi.org/10.1016/j.ajodo.2009.03.034. PMid:19892274.

6 Nagaiwa M, Gunjigake K, Yamaguchi K. The effect of mouth breathing on chewing efficiency. Angle Orthod. 2016;86(2):227-34. http://dx.doi.org/10.2319/020115-80.1. PMid:26222411.

7 Chaaban M, Corey JP. Assessing nasal Air flow: options and utility. Proc Am Thorac Soc. 2011;8(1):70-8. http://dx.doi.org/10.1513/pats.201005-034RN. PMid:21364224.

8 Cardoso de Melo AC, De Oliveira de Camargo Gomes A, Santos Cavalcanti A, Da Silva HJ. Acoustic rhinometry in mouth breathing patients: a systematic review. Rev Bras Otorrinolaringol (Engl Ed). 2015;81(2):212-8. http://dx.doi.org/10.1016/j.bjorl.2014.12.007. PMid:25618769.

9 Pacheco MCT, Casagrande CF, Teixeira LP, Finck NS, de Araújo MTM. Guidelines proposal for clinical recognition of mouth breathing children. Dental Press J Ortho. 2015;20(4):39-44. http://dx.doi.org/10.1590/2176-9451.20.4.039-044.oar.

10 Zaghi S, Peterson C, Shamtoob S, Fung B, Kwok-Keung Ng D, Jagomagi T, et al. Nasal breathing using lip taping: a simple and effective screening tool. Iran J Otorhinolaryngol. 2020;6(1):10-5. http://dx.doi.org/10.11648/j.ijo.20200601.13.

11 Warnier M, Piron L, Morsomme D, Maillart C. Assessment of mouth breathing by Speech-Language Pathologists: an international Delphi consensus. CoDAS. 2023;35(3):e20220065. http://dx.doi.org/10.1590/2317-1782/20232022065. PMid:37255206.

12 Ung N, Koenig J, Shapiro PA, Shapiro G, Trask G. A quantitative assessment of respiratory patterns and their effects on dentofacial development. Am J Orthod Dentofacial Orthop. 1990;98(6):523-32. http://dx.doi.org/10.1016/0889-5406(90)70019-9. PMid:2248231.

13 Junqueira P, Marchesan IQ, de Oliveira LR, Ciccone E, Haddad L, Rizzo MC. Speech-language pathology findings in patients with mouth breathing: multidisciplinary diagnosis according to etiology. Int J Orofacial Myology. 2010;36(1):27-32. http://dx.doi.org/10.52010/ijom.2010.36.1.3. PMid:23362600.

14 Milanesi JM, Berwig LC, Marquezan M, Schuch LH, de Moraes AB, da Silva AMT, et al. Variables associated with mouth breathing diagnosis in children based on a multidisciplinary assessment. CoDAS. 2018;30(4):e20170071. http://dx.doi.org/10.1590/2317-1782/20182017071. PMid:29561967.

15 Costa JG, Costa GS, Costa C, Vilella OV, Mattos CT, Cury-Saramago AA. Clinical recognition of mouth breathers by orthodontists: a preliminary study. Am J Orthod Dentofacial Orthop. 2017;152(5):646-53. http://dx.doi.org/10.1016/j.ajodo.2017.03.025. PMid:29103442.

16 Valera FCP, Travitzki LVV, Mattar SEM, Matsumoto MAN, Elias AM, Anselmo-Lima WT. Muscular, functional and orthodontic changes in pre school children with enlarged adenoids and tonsils. Int J Pediatr Otorhinolaryngol. 2003;67(7):761-70. http://dx.doi.org/10.1016/S0165-5876(03)00095-8. PMid:12791452.

17 De Menezes VA, Leal RB, Pessoa RS, Pontes RMES. Prevalence and factors related to mouth breathing in school children at the Santo Amaro project-Recife, 2005. Rev Bras Otorrinolaringol (Engl Ed). 2006;72(3):394-8. http://dx.doi.org/10.1016/S1808-8694(15)30975-7. PMid:17119778.

18 Saitoh I, Inada E, Kaihara Y, Nogami Y, Murakami D, Kubota N, et al. An exploratory study of the factors related to mouth breathing syndrome in primary school children. Arch Oral Biol. 2017;2018(92):57-61. http://dx.doi.org/10.1016/j.archoralbio.2018.03.012. PMid:29753207.

19 Sano M, Sano S, Kato H, Arakawa K, Arai M. Proposal for a screening questionnaire for detecting habitual mouth breathing, based on a mouth-breathing habit score. BMC Oral Health. 2018;18(1):216. http://dx.doi.org/10.1186/s12903-018-0672-6. PMid:30545339.

20 Yamaguchi H, Tada S, Nakanishi Y, Kawaminami S, Shin T, Tabata R, et al. Association between mouth breathing and atopic dermatitis in Japanese children 2-6 years old: A population-based cross-sectional study. PLoS One. 2015;10(4):1-11. http://dx.doi.org/10.1371/journal.pone.0125916. PMid:25915864.

21 Abreu RR, Rocha RL, Lamounier JA, Guerra ÂFM. Etiology, clinical manifestations and concurrent findings in mouth-breathing children. J Pediatr (Rio J). 2008;84(6):529-35. http://dx.doi.org/10.1590/S0021-75572008000700010. PMid:19060979.

22 Zicari AM, Albani F, Ntrekou P, Rugiano A, Duse M, Mattei A, et al. Oral breathing and dental malocclusions. Eur J Paediatr Dent. 2009;10(2):59-64. PMid:19566370.

23 de Mattos FMGF. Orofacial myofunctional characteristics of oral and oronasal breathers. Rev CEFAC. 2018;20(4):459-67. http://dx.doi.org/10.1590/1982-021620182042818.

24 de Mattos FMGF, Bérzin F, Nagae MH. The impact of oronasal breathing on perioral musculature. Rev CEFAC. 2017;19(6):801-11. http://dx.doi.org/10.1590/1982-0216201719611817.

25 Vainio L. Connection between movements of mouth and hand: perspectives on development and evolution of speech. Neurosci Biobehav Rev. 2019;100:211-23. http://dx.doi.org/10.1016/j.neubiorev.2019.03.005. PMid:30871957.

26 Kantor E, Poupard L, Le Bozec S, Bouisset S. Does body stability depend on postural chain mobility or stability area? Neurosci Lett. 2001;308(2):128-32. http://dx.doi.org/10.1016/S0304-3940(01)01986-3. PMid:11457576.

27 Boateng GO, Neilands TB, Frongillo EA, Melgar-Quiñonez HR, Young SL. Best practices for developing and validating scales for health, social, and behavioral research: a primer. Front Public Health. 2018;6:149. http://dx.doi.org/10.3389/fpubh.2018.00149. PMid:29942800.

28 Lalkhen AG, McCluskey A. Clinical tests: sensitivity and specificity. Contin Educ Anaesth Crit Care Pain. 2008;8(6):221-3. http://dx.doi.org/10.1093/bjaceaccp/mkn041.

29 Trevethan R. Sensitivity, specificity, and predictive values: foundations, pliabilities, and pitfalls in research and practice. Front Public Health. 2017;5:307. http://dx.doi.org/10.3389/fpubh.2017.00307. PMid:29209603.

30 Guilleminault C, Huang YS. From oral facial dysfunction to dysmorphism and the onset of pediatric OSA. Sleep Med Rev. 2017;40:203-14. http://dx.doi.org/10.1016/j.smrv.2017.06.008. PMid:29103943.
 

66579d4ea9539570664e13d5 codas Articles

CoDAS

Share this page
Page Sections