CoDAS
https://codas.org.br/article/doi/10.1590/2317-1782/20232023032pt
CoDAS
Critical Review or Scoping Review

Sinaptopatia coclear e perda auditiva oculta: uma revisão de escopo

Cochlear synaptopathy and hidden hearing loss: a scoping review

Marina de Figueiredo Colla; Pamela Papile Lunardelo; Fernanda Abalen Martins Dias

Downloads: 0
Views: 76

Resumo

RESUMO: Objetivo: Identificar as definições fisiopatológicas adotadas pelos estudos que investigaram a “sinaptopatia coclear” (SC) e “perda auditiva oculta” (PAO).

Estratégia de pesquisa: Utilizou-se a combinação de unitermos “Auditory Synaptopathy” or “Neuronal Synaptopathy” or “Hidden Hearing Loss” com “etiology” or “causality” or “diagnosis” nas bases de dados EMBASE, Pubmed (MEDLINE), CINAHL (EBSCO) e Web of Science. Critérios de seleção: Incluiu-se estudos que investigaram a SC ou PAO em humanos com procedimentos comportamentais e/ou eletrofisiológicos.Análise dos dados: Realizou-se a análise e extração de dados quanto a terminologia, definição e população estudada.

Resultados: Foram incluídos 49 artigos. Destes, 61,2% utilizaram a terminologia SC, 34,7% ambos os termos e 4,1% utilizaram PAO. As condições mais estudadas foram exposição ao ruído e zumbido.

Conclusão: A terminologia SC foi empregada na maioria dos estudos, com referência ao processo fisiopatológico de desaferenciação entre as fibras do nervo coclear e as células ciliadas internas

Palavras-chave

Audição, Perda Auditiva Oculta, Sinaptopatia Coclear, Terminologia, Revisão

Abstract

Purpose: To identify the pathophysiological definitions adopted by studies investigating “cochlear synaptopathy” (CS) and “hidden hearing loss” (HHL).

Research strategies: The combination of keywords “Auditory Synaptopathy” or “Neuronal Synaptopathy” or “Hidden Hearing Loss” with “etiology” or “causality” or “diagnosis” was used in the databases EMBASE, Pubmed (MEDLINE), CINAHL (EBSCO), and Web of Science. Selection criteria: Studies that investigated CS or HHL in humans using behavioral and/or electrophysiological procedures were included. Data analysis: Data analysis and extraction were performed with regard to terminology, definitions, and population.

Results: 49 articles were included. Of these, 61.2% used the CS terminology, 34.7% used both terms, and 4.1% used HHL. The most-studied conditions were exposure to noise and tinnitus.

Conclusion: CS terminology was used in most studies, referring to the pathophysiological process of deafferentiation between the cochlear nerve fibers and inner hair cells

Keywords

Hearing; Hidden Hearing Loss; Cochlear Synaptopathy; Terminology; Review

References

1 Kujawa SG, Liberman MC. Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J Neurosci. 2009;29(45):14077-85. http://dx.doi.org/10.1523/JNEUROSCI.2845-09.2009. PMid:19906956.

2 Woellner RC, Schuknecht HF. Hearing loss from lesions of the cochlear nerve: an experimental and clinical study. Trans Am Acad Ophthalmol Otolaryngol. 1955;59(2):147-9. PMid:14373749.

3 Schaette R, McAlpine D. Tinnitus with a normal audiogram: physiological evidence for hidden hearing loss and computational model. J Neurosci. 2011;31(38):13452-7. http://dx.doi.org/10.1523/JNEUROSCI.2156-11.2011. PMid:21940438.

4 Grose JH, Buss E, Hall JW 3rd. Loud music exposure and cochlear synaptopathy in young adults: isolated auditory brainstem response effects but no perceptual consequences. Trends Hear. 2017;21. http://dx.doi.org/10.1177/2331216517737417. PMid:29105620.

5 Guest H, Munro KJ, Prendergast G, Howe S, Plack CJ. Tinnitus with a normal audiogram: relation to noise exposure but no evidence for cochlear synaptopathy. Hear Res. 2017;344:265-74. http://dx.doi.org/10.1016/j.heares.2016.12.002. PMid:27964937.

6 Bramhall NF, Konrad-Martin D, McMillan GP. Tinnitus and auditory perception after a history of noise exposure: relationship to auditory brainstem response measures. Ear Hear. 2018;39(5):881-94. http://dx.doi.org/10.1097/AUD.0000000000000544. PMid:29337762.

7 Wang Q, Yang L, Qian M, Hong Y, Wang X, Huang Z, et al. Acute recreational noise-induced cochlear synaptic dysfunction in humans with normal hearing: a prospective cohort study. Front Neurosci. 2021;15:659011. http://dx.doi.org/10.3389/fnins.2021.659011. PMid:33897366.

8 Bramhall NF, Niemczak CE, Kampel SD, Billings CJ, McMillan GP. Evoked potentials reveal noise exposure-related central auditory changes despite normal audiograms. Am J Audiol. 2020;29(2):152-64. http://dx.doi.org/10.1044/2019_AJA-19-00060. PMid:32182128.

9 Grant KJ, Mepani AM, Wu P, Hancock KE, de Gruttola V, Liberman MC, et al. Electrophysiological markers of cochlear function correlate with hearing-in-noise performance among audiometrically normal subjects. J Neurophysiol. 2020;124(2):418-31. http://dx.doi.org/10.1152/jn.00016.2020. PMid:32639924.

10 Parker MA. Identifying three otopathologies in humans. Hear Res. 2020;398:108079. http://dx.doi.org/10.1016/j.heares.2020.108079. PMid:33011456.

11 Bal N, Derinsu U. The possibility of cochlear synaptopathy in young people using a personal listening device. Auris Nasus Larynx. 2021;48(6):1092-8. http://dx.doi.org/10.1016/j.anl.2021.03.015. PMid:33824035.

12 Grose JH, Buss E, Elmore H. Age-related changes in the auditory brainstem response and suprathreshold processing of temporal and spectral modulation. Trends Hear. 2019;23:2331216519839615. http://dx.doi.org/10.1177/2331216519839615. PMid:30977442.

13 Megha KN, Kappadi S, Kaverappa GM, Konadath S. Effects of aging versus noise exposure on auditory system in individuals with normal audiometric thresholds. J Int Adv Otol. 2021;17(4):335-42. http://dx.doi.org/10.5152/iao.2021.8789. PMid:34309555.

14 Valero MD, Burton JA, Hauser SN, Hackett TA, Ramachandran R, Liberman MC. Noise-induced cochlear synaptopathy in rhesus monkeys (Macaca mulatta). Hear Res. 2017;353:213-23. http://dx.doi.org/10.1016/j.heares.2017.07.003. PMid:28712672.

15 Reijntjes DOJ, Pyott SJ. The afferent signaling complex: regulation of type I spiral ganglion neuron responses in the auditory periphery. Hear Res. 2016;336:1-16. http://dx.doi.org/10.1016/j.heares.2016.03.011. PMid:27018296.

16 Wu PZ, Liberman LD, Bennett K, de Gruttola V, O’Malley JT, Liberman MC. Primary neural degeneration in the human cochlea: evidence for hidden hearing loss in the aging ear. Neuroscience. 2019;407:8-20. http://dx.doi.org/10.1016/j.neuroscience.2018.07.053. PMid:30099118.

17 Lobarinas E, Salvi R, Ding D. Insensitivity of the audiogram to carboplatin induced inner hair cell loss in chinchillas. Hear Res. 2013;302:113-20. http://dx.doi.org/10.1016/j.heares.2013.03.012. PMid:23566980.

18 Guest H, Munro KJ, Prendergast G, Plack CJ. Reliability and interrelations of seven proxy measures of cochlear synaptopathy. Hear Res. 2019;375:34-43. http://dx.doi.org/10.1016/j.heares.2019.01.018. PMid:30765219.

19 Bramhall NF, Konrad-Martin D, McMillan GP, Griest SE. Auditory brainstem response altered in humans with noise exposure despite normal outer hair cell function. Ear Hear. 2017;38(1):e1-12. http://dx.doi.org/10.1097/AUD.0000000000000370. PMid:27992391.

20 Suresh CH, Krishnan A. Search for electrophysiological indices of hidden hearing loss in humans: click auditory brainstem response across sound levels and in background noise. Ear Hear. 2021;42(1):53-67. http://dx.doi.org/10.1097/AUD.0000000000000905. PMid:32675590.

21 Paul BT, Bruce IC, Roberts LE. Evidence that hidden hearing loss underlies amplitude modulation encoding deficits in individuals with and without tinnitus. Hear Res. 2017;344:170-82. http://dx.doi.org/10.1016/j.heares.2016.11.010. PMid:27888040.

22 Paul BT, Waheed S, Bruce IC, Roberts LE. Subcortical amplitude modulation encoding deficits suggest evidence of cochlear synaptopathy in normal-hearing 18-19 year olds with higher lifetime noise exposure. J Acoust Soc Am. 2017;142(5):EL434-40. http://dx.doi.org/10.1121/1.5009603. PMid:29195459.

23 Bramhall NF, McMillan GP, Kampel SD. Envelope following response measurements in young veterans are consistent with noise-induced cochlear synaptopathy. Hear Res. 2021;408:108310. http://dx.doi.org/10.1016/j.heares.2021.108310. PMid:34293505.

24 Bramhall NF, Reavis KM, Feeney MP, Kampel SD. The impacts of noise exposure on the middle ear muscle reflex in a veteran population. Am J Audiol. 2022;31(1):126-42. http://dx.doi.org/10.1044/2021_AJA-21-00133. PMid:35050699.

25 Aromataris E, Munn Z. JBI manual for evidence synthesis [Internet]. Adelaide: JBI; 2020 [citado em 2016 Dez 16]. JBI systematic reviews; p. 406-451. Disponível em: https://jbi-global-wiki.refined.site/space/MANUAL/4685874/Downloadable+PDF+-+current+version?attachment=/rest/api/content/4685874/child/attachment/att4691824/download&type=application/pdf&filename=JBIMES_2021April.pdf.

26 Tricco AC, Lillie E, Zarin W, O’Brien KK, Colquhoun H, Levac D, et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med. 2018;169(7):467-73. http://dx.doi.org/10.7326/M18-0850. PMid:30178033.

27 Mehraei G, Hickox AE, Bharadwaj HM, Goldberg H, Verhulst S, Liberman MC, et al. Auditory brainstem response latency in noise as a marker of cochlear synaptopathy. J Neurosci. 2016;36(13):3755-64. http://dx.doi.org/10.1523/JNEUROSCI.4460-15.2016. PMid:27030760.

28 Prendergast G, Millman RE, Guest H, Munro KJ, Kluk K, Dewey RS, et al. Effects of noise exposure on young adults with normal audiograms II: behavioral measures. Hear Res. 2017;356:74-86. http://dx.doi.org/10.1016/j.heares.2017.10.007. PMid:29126651.

29 Grinn SK, Wiseman KB, Baker JA, Le Prell CG. Hidden hearing loss? No effect of common recreational noise exposure on cochlear nerve response amplitude in humans. Front Neurosci. 2017;11:465. http://dx.doi.org/10.3389/fnins.2017.00465. PMid:28919848.

30 Wojtczak M, Beim JA, Oxenham AJ. Weak middle-ear-muscle reflex in humans with noise-induced tinnitus and normal hearing may reflect cochlear synaptopathy. eNeuro. 2017;4(6):ENEURO.0363-17.2017. http://dx.doi.org/10.1523/ENEURO.0363-17.2017. PMid:29181442.

31 Shim HJ, An YH, Kim DH, Yoon JE, Yoon JH. Comparisons of auditory brainstem response and sound level tolerance in tinnitus ears and non-tinnitus ears in unilateral tinnitus patients with normal audiograms. PLoS One. 2017;12(12):e0189157. http://dx.doi.org/10.1371/journal.pone.0189157. PMid:29253030.

32 Prendergast G, Guest H, Munro KJ, Kluk K, Léger A, Hall DA, et al. Effects of noise exposure on young adults with normal audiograms I: electrophysiology. Hear Res. 2017;344:68-81. http://dx.doi.org/10.1016/j.heares.2016.10.028. PMid:27816499.

33 Valderrama JT, Beach EF, Yeend I, Sharma M, Van Dun B, Dillon H. Effects of lifetime noise exposure on the middle-age human auditory brainstem response, tinnitus and speech-in-noise intelligibility. Hear Res. 2018;365:36-48. http://dx.doi.org/10.1016/j.heares.2018.06.003. PMid:29913342.

34 Guest H, Munro KJ, Prendergast G, Millman RE, Plack CJ. Impaired speech perception in noise with a normal audiogram: no evidence for cochlear synaptopathy and no relation to lifetime noise exposure. Hear Res. 2018;364:142-51. http://dx.doi.org/10.1016/j.heares.2018.03.008. PMid:29680183.

35 Guest H, Munro KJ, Plack CJ. Acoustic middle-ear-muscle-reflex thresholds in humans with normal audiograms: no relations to tinnitus, speech perception in noise, or noise exposure. Neuroscience. 2019;407:75-82. http://dx.doi.org/10.1016/j.neuroscience.2018.12.019. PMid:30579832.

36 Ridley CL, Kopun JG, Neely ST, Gorga MP, Rasetshwane DM. Using thresholds in noise to identify hidden hearing loss in humans. Ear Hear. 2018;39(5):829-44. http://dx.doi.org/10.1097/AUD.0000000000000543. PMid:29337760.

37 Bhatt IS, Wang J. Evaluation of dichotic listening performance in normal-hearing, noise-exposed young females. Hear Res. 2019;380:10-21. http://dx.doi.org/10.1016/j.heares.2019.05.008. PMid:31167151.

38 Johannesen PT, Buzo BC, Lopez-Poveda EA. Evidence for age-related cochlear synaptopathy in humans unconnected to speech-in-noise intelligibility deficits. Hear Res. 2019;374:35-48. http://dx.doi.org/10.1016/j.heares.2019.01.017. PMid:30710791.

39 Rissatto-Lago MR, Cruz Fernandes L, Lyra IM, Terse-Ramos R, Teixeira R, Salles C, et al. Hidden hearing loss in children and adolescents with sickle cell anemia. Int J Pediatr Otorhinolaryngol. 2019;116:186-91. http://dx.doi.org/10.1016/j.ijporl.2018.10.042. PMid:30554696.

40 Prendergast G, Couth S, Millman RE, Guest H, Kluk K, Munro KJ, et al. Effects of age and noise exposure on proxy measures of cochlear synaptopathy. Trends Hear. 2019;23. http://dx.doi.org/10.1177/2331216519877301. PMid:31558119.

41 Megha KN, Divyashree KN, Lakshmi A, Adithya S, Keerthana KP, Pushpalatha ZV, et al. Narrow-band chirp and tone burst auditory brainstem response as an early indicator of synaptopathy in industrial workers exposed to occupational noise. Intractable Rare Dis Res. 2019;8(3):179-86. http://dx.doi.org/10.5582/irdr.2019.01073. PMid:31523595.

42 Keshishzadeh S, Garrett M, Vasilkov V, Verhulst S. The derived-band envelope following response and its sensitivity to sensorineural hearing deficits. Hear Res. 2020;392:107979. http://dx.doi.org/10.1016/j.heares.2020.107979. PMid:32447097.

43 Mepani AM, Kirk SA, Hancock KE, Bennett K, de Gruttola V, Liberman MC, et al. Middle ear muscle reflex and word recognition in “normal-hearing” adults: evidence for cochlear synaptopathy? Ear Hear. 2020;41(1):25-38. http://dx.doi.org/10.1097/AUD.0000000000000804. PMid:31584501.

44 Couth S, Prendergast G, Guest H, Munro KJ, Moore DR, Plack CJ, et al. Investigating the effects of noise exposure on self-report, behavioral and electrophysiological indices of hearing damage in musicians with normal audiometric thresholds. Hear Res. 2020;395:108021. http://dx.doi.org/10.1016/j.heares.2020.108021. PMid:32631495.

45 Kara E, Aydın K, Akbulut AA, Karakol SN, Durmaz S, Yener HM, et al. Assessment of hidden hearing loss in normal hearing individuals with and without tinnitus. J Int Adv Otol. 2020;16(1):87-92. http://dx.doi.org/10.5152/iao.2020.7062. PMid:32209515.

46 Shehorn J, Strelcyk O, Zahorik P. Associations between speech recognition at high levels, the middle ear muscle reflex and noise exposure in individuals with normal audiograms. Hear Res. 2020;392:107982. http://dx.doi.org/10.1016/j.heares.2020.107982. PMid:32454368.

47 Okada M, Welling DB, Liberman MC, Maison SF. Chronic conductive hearing loss is associated with speech intelligibility deficits in patients with normal bone conduction thresholds. Ear Hear. 2020;41(3):500-7. http://dx.doi.org/10.1097/AUD.0000000000000787. PMid:31490800.

48 Washnik NJ, Bhatt IS, Phillips SL, Tucker D, Richter S. Evaluation of cochlear activity in normal-hearing musicians. Hear Res. 2020;395:108027. http://dx.doi.org/10.1016/j.heares.2020.108027. PMid:32659614.

49 Carcagno S, Plack CJ. Effects of age on electrophysiological measures of cochlear synaptopathy in humans. Hear Res. 2020;396:108068. http://dx.doi.org/10.1016/j.heares.2020.108068. PMid:32979760.

50 Marmel F, Cortese D, Kluk K. The ongoing search for cochlear synaptopathy in humans: masked thresholds for brief tones in Threshold Equalizing Noise. Hear Res. 2020;392:107960. http://dx.doi.org/10.1016/j.heares.2020.107960. PMid:32334105.

51 Carcagno S, Plack CJ. Effects of age on psychophysical measures of auditory temporal processing and speech reception at low and high levels. Hear Res. 2021;400:108117. http://dx.doi.org/10.1016/j.heares.2020.108117. PMid:33253994.

52 Shim HJ, Cho YT, Oh HS, An YH, Kim DH, Kang YS. Within-subject comparisons of the auditory brainstem response and uncomfortable loudness levels in ears with and without tinnitus in unilateral tinnitus subjects with normal audiograms. Otol Neurotol. 2021;42(1):10-7. http://dx.doi.org/10.1097/MAO.0000000000002867. PMid:33177407.

53 Nam GS, Kim JY, Hong SA, Kim SG, Son EJ. Limitation of conventional audiometry in identifying hidden hearing loss in acute noise exposure. Yonsei Med J. 2021;62(7):615-21. http://dx.doi.org/10.3349/ymj.2021.62.7.615. PMid:34164959.

54 Vasilkov V, Garrett M, Mauermann M, Verhulst S. Enhancing the sensitivity of the envelope-following response for cochlear synaptopathy screening in humans: the role of stimulus envelope. Hear Res. 2021;400:108132. http://dx.doi.org/10.1016/j.heares.2020.108132. PMid:33333426.

55 Chen Z, Zhang Y, Zhang J, Zhou R, Zhong Z, Wei C, et al. Cochlear synaptopathy: a primary factor affecting speech recognition performance in presbycusis. BioMed Res Int. 2021;2021:6667531. http://dx.doi.org/10.1155/2021/6667531. PMid:34409106.

56 Edvall NK, Mehraei G, Claeson M, Lazar A, Bulla J, Leineweber C, et al. Alterations in auditory brain stem response distinguish occasional and constant tinnitus. J Clin Invest. 2022;132(5):e155094. http://dx.doi.org/10.1172/JCI155094. PMid:35077399.

57 Turner K, Moshtaghi O, Saez N, Richardson M, Djalilian H, Zeng FG, et al. Auditory brainstem response wave i amplitude has limited clinical utility in diagnosing tinnitus in humans. Brain Sci. 2022;12(2):142. http://dx.doi.org/10.3390/brainsci12020142. PMid:35203907.

58 Makary CA, Shin J, Kujawa SG, Liberman MC, Merchant SN. Age-related primary cochlear neuronal degeneration in human temporal bones. J Assoc Res Otolaryngol. 2011;12(6):711-7. http://dx.doi.org/10.1007/s10162-011-0283-2. PMid:21748533.

59 Sergeyenko Y, Lall K, Liberman MC, Kujawa SG. Age-related cochlear synaptopathy: an early-onset contributor to auditory functional decline. J Neurosci. 2013;33(34):13686-94. http://dx.doi.org/10.1523/JNEUROSCI.1783-13.2013. PMid:23966690.

60 Liberman MC, Kujawa SG. Cochlear synaptopathy in acquired sensorineural hearing loss: manifestations and mechanisms. Hear Res. 2017;349:138-47. http://dx.doi.org/10.1016/j.heares.2017.01.003. PMid:28087419.

61 Berlin CI. Auditory neuropathy: using OAEs and ABRs from screening to management. Semin Hear. 1999;20(04):307-14. http://dx.doi.org/10.1055/s-0028-1082946.

62 Esmaili AA, Renton J. A review of tinnitus. Aust J Gen Pract. 2018;47(4):205-8. http://dx.doi.org/10.31128/AJGP-12-17-4420. PMid:29621860.

63 AAA: American Academy of Audiology. American Academy of Audiology Clinical Practice Guidelines: diagnosis, treatment and management of children and adults with central auditory processing disorder [Internet]. Reston: AAA; 2010 [citado em 2016 Dez 16]. Disponível em: https://www.audiology.org/wp-content/uploads/2021/05/CAPD-Guidelines-8-2010-1.pdf_539952af956c79.73897613-1.pdf.
 


Submitted date:
02/17/2023

Accepted date:
07/10/2023

66579126a953956c064f5153 codas Articles

CoDAS

Share this page
Page Sections