CoDAS
https://codas.org.br/article/doi/10.1590/2317-1782/e20240301en
CoDAS
Original Article

Cortical and subcortical auditory evoked potentials with verbal stimulus: correlation and association in adults

Christine Grellmann Schumacher; Tainá Betti; Hélinton Goulart Moreira; Dayane Domeneghini Didoné; Michele Vargas Garcia

Downloads: 0
Views: 11

Abstract

ABSTRACT: Purpose: To analyze the correlation and association between the Long Latency Auditory Evoked Potential (LLAEP) and the Frequency Following Response (FFR) in young adults with normal hearing thresholds.

Methods: This was a cross-sectional, quantitative, and qualitative study. The sample included 32 young adults (mean age of 22.5 years) of both sexes who met the inclusion criteria. The participants underwent basic audiological evaluation, screening of auditory skills through the Random Gap Detection Test and Dichotic Digits Test, and electrophysiological tests: Auditory Brainstem Response with click stimulus, Long Latency Auditory Evoked Potential, and Frequency Following Response with verbal stimulus.

Results: A statistically significant and positive brightness was observed between waves V, A and C and waves P1 and N2, evidencing the participation of auditory structures of the primary auditory cortex in the generation of FFR responses, and a negative appearance between waves C and N2, reflecting the different auditory abilities to generate the responses of each component. There was no significant association between individuals classified as normal and altered in the tests in general performed in the present study or when associated between each component.

Conclusion: Waves V, A, and C correlate with waves P1 and N2 of the Long Latency Auditory Evoked Potential in young adults. There was no evidence of associations between the qualitative results of the Frequency Following Response and the Long Latency Auditory Evoked Potential.

Keywords

Hearing, Electrophysiology, Evoked Potentials, Young Adult, Association, Correlation of Data

Referências

1 Griz SMS, Pacífico FA. Anatomia e fisiologia da orelha interna, nervo auditivo e do tronco encefálico. In: Menezes PL, editor. Tratado de eletrofisiologia para audiologia. 1. ed. São Paulo: Book Toy; 2018. p. 63-4.

2 McPherson DL. Late potentials of the auditory system. San Diego: Singular Publishing Group; 1996. Long Latency auditory evoked potentials; p. 7-21.

3 Hall JW. Handbook of auditory evoked responses: principles, procedures and 1358 protocols. Boston: Pearson Education; 2015. 1031 p.

4 Moreira HG, Bruno RS, Oppitz SJ, Sanfins MD, Garcia MV. Zumbido crônico: análise das contribuições clínicas de diferentes avaliações audiológicas. Audiol Commun Res. 2022;27:e2660. https://doi.org/10.1590/2317-6431-2022-2660en.

5 Soares LS. Covid-19 e audição: uma proposta de intervenção fonoaudiológica em adultos [dissertação]. Santa Maria: Universidade Federal de Santa Maria; 2023.

6 Silva LS, Regaçone SF, Oliveira ACS, Oliveira LS, Fernandes FT, Frizzo AACF. Potenciais corticais auditivos: uso de diferentes estímulos de fala em populações infantis. Audiol Commun Res. 2017;22(0):e1788. https://doi.org/10.1590/2317-6431-2016-1788.

7 Kraus N, Nicol T. Aggregate neural responses to speech sounds in the central auditory system. Speech Commun. 2003;41(1):35-47. https://doi.org/10.1016/S0167-6393(02)00091-2.

8 Malavolta VC, Sanfins MD, Soares L. S., Skarzynski PH, Moreira HG, Nascimento VOC, et al. Frequency-following response and auditory middle latency response: an analysis of central auditory processing in young adults. Rev CEFAC. 2022;24(6):e5622. https://doi.org/10.1590/1982-0216/20222465.

9 Rohers DE, Mundt A, Portalete C, Malavolta V, Moreira H, Keske-Soares M, et al. Quality of life questionnaire and frequency following response in two dysarthric subjects with neurodegenerative disease: a case study. J Hear Sci. 2022;12(3):57-63. https://doi.org/10.17430/JHS.2022.12.3.6.

10 Tessele DR, Peixe BP, Sanguebuche TR, Malavolta VC, Garcia MV, Sanfins MD. Aging process and central auditory pathway: a study based on auditory brainstem evoked potential and frequency-following response. Einstein (Sao Paulo). 2022;20:eAO6829. https://doi.org/10.31744/einstein_journal/2022AO6829. PMid:35649058.

11 Hornickel J, Chandrasekaran B, Zecker S, Kraus N. Auditory brainstem measures predict reading and speech-in-noise perception in school-aged children. Behav Brain Res. 2011;216(2):597-605. https://doi.org/10.1016/j.bbr.2010.08.051. PMid:20826187.

12 Kraus N, Anderson S, White-Schwoch T. The frequency-following response: a window into human communication. In: Kraus N, Anderson S, White-Schwoch T, Fay RR, Popper AN, editors. The frequency-following response: a window into human communication. New York: Springer-Nature; 2017. p. 1-15.. https://doi.org/10.1007/978-3-319-47944-6_1.

13 Coffey EBJ, Herholz SC, Chepesiuk AM, Baillet S, Zatorre RJ. Cortical contributions to the auditory frequency-following response revealed by MEG. Nat Commun. 2016;7(1):11070. https://doi.org/10.1038/ncomms11070. PMid:27009409.

14 Banai K, Kraus N. The dynamic brainstem: implications for APD. In: McFarland D, Cacace A, editors. Current controversies in central auditory processing disorder. San Diego: Singular Publishing Group; 2008. p. 269-89.

15 Bidelman GM. Subcortical sources dominate the neuroelectric auditory frequency-following response to speech. Neuroimage. 2018;175:56-69. https://doi.org/10.1016/j.neuroimage.2018.03.060. PMid:29604459.

16 Brasil. Ministério da Saúde. Conselho Nacional de Saúde. Resolução nº 510, de 7 de abril de 2016. Diário Oficial da União; Brasília; 24 maio 2016, Seção 1:44-6.

17 WHO: World Health Organization. Prevention of blindness and deafness [Internet]. Geneva: WHO; 2020 [cited 2024 Sept 26]. 34 p. Available from: https://www.who.int/publications/i/item/basic-ear-and-hearing-care-resource

18 Jerger J. Clinical experience with impedance audiometry. Arch Otolaryngol. 1970;92(4):311-24. https://doi.org/10.1001/archotol.1970.04310040005002. PMid:5455571.

19 Pereira LD, Schochat E. Testes auditivos comportamentais para avaliação do processamento auditivo central. Barueri: Pró Fono; 2011.

20 Keith, R.W. Random gap detection test. Missouri: Auditec of Saint Louis; 2000.

21 Braga BHC, Pereira LD, Dias KZ. Critérios de normalidade dos testes de resolução temporal: random gap detection test e gaps-in-noise. Rev CEFAC. 2015;17(3):836-46. https://doi.org/10.1590/1982-021620158114.

22 Webster R. The auditory brainstem response (ABR): a normative study using the intelligent hearing systems smart evoked potential system [thesis]. Towson: Towson University; 2017.

23 Song JH, Nicol T, Kraus N. Test-retest reliability of the speech-evoked auditory brainstem response. Clin Neurophysiol. 2011;122(2):346-55. https://doi.org/10.1016/j.clinph.2010.07.009. PMid:20719558.

24 Didoné DD, Oppitz SJ, Folgearini J, Biaggio EP, Garcia MV. Auditory evoked potentials with different speech stimuli: a comparison and standardization of values. Int Arch Otorhinolaryngol. 2016;20(2):99-104. https://doi.org/10.1055/s-0035-1566133. PMid:27096012.

25 Pinheiro NS. Efeito do ruído no slope e área do complexo V-A no frequency following response [dissertação]. Recife: Universidade Federal de Pernambuco; 2020.

26 Rocha MFB. O mascaramento nos potenciais evocados auditivos corticais com estímulo de fala [dissertação]. Recife: Universidade Federal de Pernambuco; 2020.

27 Russo N, Nicol T, Musacchia G, Kraus N. Brainstem responses to speech syllables. Clin Neurophysiol. 2004;115(9):2021-30. https://doi.org/10.1016/j.clinph.2004.04.003. PMid:15294204.

28 Madruga-Rimoli CC, Sanfins MD, Skarżyński PH, Ubiali T, Skarżyńska MB, Colella Dos Santos MF. Electrophysiological testing for an auditory processing disorder and reading performance in 54 school students aged between 8 and 12 years. Med Sci Monit. 2023;29:e940387. https://doi.org/10.12659/MSM.940387. PMid:37190676.

29 Abreu NCB, Jesus LC, Alves LM, Mancini PC, Labanca L, Resende LM. Validação da Escala de Autopercepção de Habilidades do Processamento Auditivo Central (EAPAC) para adultos. Audiol Commun Res. 2022;27:e2577. https://doi.org/10.1590/2317-6431-2021-2577.

30 Souza GV, Matas CG, Silva LAF, Lobo IFN, Samelli AG. Estudo da plasticidade neural em adultos e idosos novos usuários de aparelho de amplificação sonora individual. Rev CEFAC. 2020;22(5):e3420. https://doi.org/10.1590/1982-0216/20202253420.

31 Krishnamurti S, Forrester J, Rutledge C, Holmes GW. A case study of the changes in the speech-evoked auditory brainstem response associated with auditory training in children with auditory processing disorders. Int J Pediatr Otorhinolaryngol. 2013;77(4):594-604. https://doi.org/10.1016/j.ijporl.2012.12.032. PMid:23357780.

32 Clayson P, Molina JL, Joshi YB, Thomas ML, Sprock J, Nungaray J, et al. Evaluation of the frequency following response as a predictive biomarker of response to cognitive training in schizophrenia. Psychiatry Res. 2021;305:114239. https://doi.org/10.1016/j.psychres.2021.114239. PMid:34673326.
 


Submetido em:
26/09/2024

Aceito em:
30/06/2025

698a4f31a95395393f63e863 codas Articles

CoDAS

Share this page
Page Sections