CoDAS
https://codas.org.br/article/doi/10.1590/2317-1782/e20240071pt
CoDAS
Artigo Original

Função de crescimento das EOAPD em escolares com prejuízo em habilidade auditiva de ordenação temporal

DPOAE growth function in schoolchildren with impaired temporal ordering skills

Patricia Kimiko Kumagai; Seisse Gabriela Gandolfi Sanches; Renata Mota Mamede Carvallo

Downloads: 0
Views: 89

Resumo

RESUMO: Objetivo: Investigar se as respostas cocleares de um grupo de crianças com testes de ordenação temporal dentro da normalidade seriam distintas daquelas encontradas em crianças com tais testes alterados.

Método: Participaram do estudo 25 crianças entre 8 e 13 anos, com limiares audiométricos normais, timpanometria tipo A e emissões otoacústicas-produto de distorção (EOAPD) presentes em ambas as orelhas. Destas, 13 crianças formaram o Grupo Estudo e 12 o Grupo Controle. O Grupo Estudo se diferenciou do Grupo Controle por apresentar alteração em testes auditivos temporais. Além dos testes para averiguar os critérios de inclusão, foi realizado o registro da curva de crescimento das EOAPD para três diferentes frequências f2, respectivamente 2002, 3003 e 4004 Hz. Os estímulos foram apresentados na intensidade de f2 (L2) de 20 a 65 dBNPS em degraus de 5 dB e o nível de intensidade de f1 (L1) seguiu a fórmula: L1=0,4L2+39 dB. Os dados foram tratados estatisticamente, adotando-se nível de significância de 5%.

Resultados: Os grupos não se diferenciaram em relação aos valores das EOAPD convencionais (DP-Grama). O Grupo Estudo diferenciou-se do Grupo Controle por exibir tanto o limiar (p=0,034), como o slope mais elevado (p=0,043) nas curvas de crescimento de EOAPD, isoladamente na frequência de 2000Hz.

Conclusão: Crianças com alteração em testes de ordenação temporal necessitam de uma maior intensidade para alcançar o limiar das EOAPD na frequência de 2000 Hz quando comparadas às crianças sem queixas, apresentando também uma amplificação coclear mais linear nessa mesma frequência, indicada pelo aumento do valor do slope.

Palavras-chave

Emissões Otoacústicas Espontâneas, Percepção Auditiva, Testes Auditivos, Audição, Criança

Abstract

Purpose  To investigate whether the cochlear responses of a group of children with normal temporal ordering tests would be different from those children with abnormal results in the same tests.

Methods  25 children aged 8 to 13 years participated in the study, all with normal range pure-tone audiometry thresholds, type A tympanometry and distortion product otoacoustic emissions (DPOAE) present in both ears. Of these, 13 children formed the Study Group and 12 the Control Group. The Study Group differed from the Control Group by presenting changes in temporal auditory tests. In addition to the tests to verify the inclusion criteria, the DPOAE growth function were recorded for three different f2 frequencies, respectively 2002, 3003 and 4004 Hz. The stimuli were presented at level f2 (L2) from 20 to 65 dB SPL in steps of 5 dB and the stimulus level f1 (L1) followed the formula: L1=0.4L2+39 dB. The data were analyzed statistically, adopting a significance level of 5%.

Results  The groups did not differ in relation to conventional DPOAE values (DP-Gram). The Study Group differed from the Control Group by exhibiting both the threshold (p=0.034) and the higher slope (p=0.043) in the 2000 Hz DPOAE growth.

Conclusion  Children with alterations in temporal ordering tests require greater intensity to reach the DPOAE threshold at a frequency of 2000 Hz when compared to children without complaints, also presenting a more linear cochlear amplification at this same frequency, indicated by the increase in the value of slope.

Keywords

Otoacoustic Emissions Spontaneous; Auditory Perception; Hearing Tests; Hearing; Child

Referências

1 Kemp DT, Bray P, Alexander L, Brown AM. Acoustic emission cochleography: pratical aspects. Scand Audiol Suppl. 1986;25:71-95. PMid:3472324.

2 Go NA, Stamper GC, Johnson TA. Cochlear mechanisms and otoacoustic emission test performance. Ear Hear. 2019;40(2):401-17. http://doi.org/10.1097/AUD.0000000000000625. PMid:29952805.

3 Stover L, Gorga MP, Neely ST, Montoya D. Toward optimizing the clinical utility of distortion product otoacoustic emission measurements. J Acoust Soc Am. 1996;100(2):956-67. http://doi.org/10.1121/1.416207. PMid:8759949.

4 Prieve BA, Gorga MP, Schmidt A, Neely ST, Peters J, Schultes L, et al. Analysis of transient-evoked otoacoustic emissions in normal-hearing and hearing-impaired ears. J Acoust Soc Am. 1993;93(6):3308-19. http://doi.org/10.1121/1.405715. PMid:8326059.

5 Campos UP, Sanches SG, Hatzopoulos S, Carvallo RM, Kochanek K, Skarżyński H. Alteration of distortion product otoacoustic emission input/output functions in subjects with a previous history of middle ear dysfunction. Med Sci Monit. 2012;18(4):MT27-31. PMid:22460101.

6 Sanches SG, Sanchez TG, Carvallo RM. Influence of cochlear function on auditory temporal resolution in tinnitus patients. Audiol Neurotol. 2010;15(5):273-81. http://doi.org/10.1159/000272939. PMid:20068290.

7 Glavin CC, Siegel J, Dhar S. Distortion Product Otoacoustic Emission (DPOAE) growth in aging ears with clinically normal behavioral thresholds. J Assoc Res Otolaryngol. 2021;22(6):659-80. http://doi.org/10.1007/s10162-021-00805-3. PMid:34591199.

8 Zelle D, Dalhoff E, Gummer AW. Objective audiometry with DPOAEs: new findings for generation mechanisms and clinical applications. HNO. 2017;65(Suppl 2):122-9. http://doi.org/10.1007/s00106-016-0267-y. PMid:28470484.

9 Bader K, Dierkes L, Braun LH, Gummer AW, Dalhoff E, Zelle D. Test-retest reliability of distortion-product thresholds compared to behavioral auditory thresholds. Hear Res. 2021;406:108232. http://doi.org/10.1016/j.heares.2021.108232. PMid:33984603.

10 Dorn PA, Konrad-Martin D, Neely ST, Keefe DH, Cyr E, Gorga MP. Distortion product otoacoustic emission input/output functions in normal-hearing and hearing-impaired human ears. J Acoust Soc Am. 2001;110(6):3119-31. http://doi.org/10.1121/1.1417524. PMid:11785813.

11 Zelle D, Bader K, Dierkes L, Gummer AW, Dalhoff E. Derivation of input-output functions from distortion-product otoacoustic emission level maps. J Acoust Soc Am. 2020;147(5):3169-87. http://doi.org/10.1121/10.0001142. PMid:32486784.

12 Guinan JJ Jr. Olivocochlear efferents: anatomy, physiology, function, and the measurement of efferent effects in humans. Ear Hear. 2006;27(6):589-607. http://doi.org/10.1097/01.aud.0000240507.83072.e7. PMid:17086072.

13 Oxenham AJ, Bacon SP. Cochlear compression: perceptual measures and implications for normal and impaired hearing. Ear Hear. 2003;24(5):352-66. http://doi.org/10.1097/01.AUD.0000090470.73934.78. PMid:14534407.

14 Ortmann AJ, Abdala C. Changes in the compressive nonlinearity of the cochlea during early aging: estimates from distortion OAE input/output functions. Ear Hear. 2016;37(5):603-14. http://doi.org/10.1097/AUD.0000000000000319. PMid:27232070.

15 Avan P, Buki B, Petit C. Auditory distortions: origins and functions. Physiol Rev. 2013;93(4):1563-619. http://doi.org/10.1152/physrev.00029.2012. PMid:24137017.

16 Abdala C, Ortmann AJ, Guardia YC. Weakened cochlear nonlinearity during human aging and perceptual correlates. Ear Hear. 2021;42(4):832-45. http://doi.org/10.1097/AUD.0000000000001014. PMid:33886169.

17 Gates GA, Mills D, Nam BH, D’Agostino R, Rubel EW. Effects of age on the distortion product otoacoustic emission growth functions. Hear Res. 2002;163(1-2):53-60. http://doi.org/10.1016/S0378-5955(01)00377-X. PMid:11788199.

18 Musiek F, Shinn J, Jirsa R, Bamiou D, Baran J, Zaida E. The GIN (Gaps in Noise) test performance in subjects with and without confirmed central auditory nervous system involvement. Ear Hear. 2005;26(6):608-18. http://doi.org/10.1097/01.aud.0000188069.80699.41. PMid:16377996.

19 Cestnick L, Jerger J. Auditory temporal processing and lexical/nonlexical reading in developmental dyslexics. J Am Acad Audiol. 2000;11(9):501-13. http://doi.org/10.1055/s-0042-1748139. PMid:11057735.

20 Soares AJ, Sanches SG, Alves DC, Carvallo RM, Cárnio MS. Temporal auditory processing and phonological awareness in reading and writing disorders: preliminary data. CoDAS. 2013;25(2):188-90. http://doi.org/10.1590/S2317-17822013000200016. PMid:24408250.

21 Balen SA. Reconhecimento de padrões auditivos de freqüência e de duração: desempenho de crianças escolares de 7 a 11 anos [tese]. São Paulo: Universidade de São Paulo; 2001.

22 Auditec. Evaluation manual of pitch pattern sequence and duration pattern sequence. St. Louis: Auditec; 1997.

23 Kummer P, Janssen T, Arnold W. The level and growth behavior of the 2 f1-f2 distortion product otoacoustic emission and its relationship to auditory sensitivity in normal hearing and cochlear hearing loss. J Acoust Soc Am. 1998;103(6):3431-44. http://doi.org/10.1121/1.423054. PMid:9637030.

24 Rezende BA, Lemos SM, Medeiros AM. Temporal auditory aspects in children with poor school performance and associated factors. CoDAS. 2016;28(3):226-33. http://doi.org/10.1590/2317-1782/20162015170. PMid:27462731.

25 Hunter LL, Blankenship CM, Lin L, Sloat NT, Perdew A, Stewart H, et al. Peripheral auditory involvement in childhood listening difficulty. Ear Hear. 2021;42(1):29-41. http://doi.org/10.1097/AUD.0000000000000899. PMid:32740300.

26 Barbosa TA, Durante AS, Granato L. Distortion-product otoacoustic emission growth curves in neonates. Rev Assoc Med Bras. 2014;60(6):591-8. http://doi.org/10.1590/1806-9282.60.06.020. PMid:25650862.

27 Gregan MJ, Nelson PB, Oxenham AJ. Behavioral measures of cochlear compression and temporal resolution as predictors of speech masking release in hearing-impaired listeners. J Acoust Soc Am. 2013;134(4):2895-912. http://doi.org/10.1121/1.4818773. PMid:24116426.

28 Abdala C, Ortmann AJ, Guardia YC. Weakened cochlear nonlinearity during human aging and perceptual correlates. Ear Hear. 2021;42(4):832-45. http://doi.org/10.1097/AUD.0000000000001014. PMid:33886169.

29 Tallal P, Merzenich MM, Miller S, Jenkins W. Language learning impairments: integrating basic science, technology, and remediation. Exp Brain Res. 1998;123(1-2):210-9. http://doi.org/10.1007/s002210050563. PMid:9835411.

30 Marrufo-Pérez MI, Eustaquio-Martín A, López-Bascuas LE, Lopez-Poveda EA. Temporal effects on monaural amplitude-modulation sensitivity in ipsilateral, contralateral and bilateral noise. J Assoc Res Otolaryngol. 2018;19(2):147-61. http://doi.org/10.1007/s10162-018-0656-x. PMid:29508100.

31 Shannon RV, Zeng FG, Kamath V, Wygonski J, Ekelid M. Speech recognition with primarily temporal cues. Science. 1995;270(5234):303-4. http://doi.org/10.1126/science.270.5234.303. PMid:7569981.

32 Vilela N, Wertzner HF, Sanches SG, Neves-Lobo IF, Carvallo RM. Temporal processing in children with phonological disorders submitted to auditory training: a pilot study. J Soc Bras Fonoaudiol. 2012;24(1):42-8. http://doi.org/10.1590/S2179-64912012000100008. PMid:22460371.

33 Glavin CC, Dhar S, Goodman SS. Measurement of swept level distortion product otoacoustic emission growth functions at multiple frequencies simultaneously. JASA Express Lett. 2023;3(6):064401. http://doi.org/10.1121/10.0019578. PMid:37261430.
 


Submetido em:
27/03/2024

Aceito em:
25/08/2024

67bf6ff3a9539505c25d1f52 codas Articles

CoDAS

Share this page
Page Sections