CoDAS
https://codas.org.br/article/doi/10.1590/2317-1782/e20230310pt
CoDAS
Critical Review or Scoping Review

Sistemas de microfone remoto em crianças e adolescentes com transtorno do espectro autista: revisão de escopo

Remote microphone systems in children and adolescents with autism spectrum disorders: a scoping review

Bianca Stephany Barbosa Vital; Karen Melissa Gonzaga dos Santos; Aryelly Dayane da Silva Nunes Araújo; Joseli Soares Brazorotto; Regina Tangerino de Souza Jacob; Karinna Veríssimo Meira Taveira; Sheila Andreoli Balen

Downloads: 0
Views: 95

Resumo

RESUMO: Objetivo: Mapear a literatura acerca do uso do Sistema de Microfone Remoto (SMR) em crianças e adolescentes com Transtorno do Espectro Autista (TEA).

Método: Revisão de Escopo com recomendações do Instituto Joanna Briggs e do checklist PRISMA-ScR. Foi realizada busca nas bases de dados: Pubmed, Embase, Scopus, Web of Science, Lilacs e na literatura cinzenta Google Scholar e ProQuest, além de listas de referências dos estudos incluídos e consulta a experts. Foram incluídos estudos de intervenção, com crianças e adolescentes com TEA que fizeram uso do SMR, sem restrição de gênero, idioma, idade, tempo de publicação, etnia ou localização geográfica.

Resultados: Foram identificados 709 estudos na fase 1. Após a leitura de 14 textos completos com elegibilidade, oito estudos foram elegíveis. Os estudos foram heterogêneos quanto ao modelo do SMR (individual ou em campo), dos testes aplicados, período e local de intervenção. Constatou-se favorecimento da percepção de fala com melhora na interação social, comportamento, atenção e memória auditiva, tolerância ao ruído e redução do estresse, além de modificação na atividade neural a partir da avaliação eletrofisiológica.

Conclusão: O uso do SMR apresentou benefícios na percepção de fala, interação social e comportamento de adolescentes e crianças com TEA. Há necessidade de mais estudos para definir protocolos e parâmetros de indicação nesta população.

Palavras-chave

Transtorno do Espectro Autista, Microfone Remoto, Percepção Auditiva, Crianças, Adolescentes

Abstract

Purpose  To map the literature on the use of the Remote Microphone System (RMS) in children and adolescents with Autism Spectrum Disorder (ASD).

Methods  Scoping Review following the Joanna Briggs Institute recommendations and PRISMA-ScR checklist. Search was carried out in the databases: PubMed, Embase, Scopus, Web of Science, Lilacs, and gray literature, including Google Scholar and ProQuest, as well as reference lists of included studies and expert consultations. Intervention studies with children and adolescents with ASD using RMS were included, without gender, language, age, publication time, ethnicity, or geographical location restrictions.

Results  709 studies were identified in phase 1. After reviewing 14 full texts with eligibility, eight studies were eligible. Studies were heterogeneous in the RMS model (personal or free field), applied tests, intervention period, and location. Improvement in speech perception, social interaction, behavior, attention, auditory memory, noise tolerance, stress reduction, and modification in neural activity through electrophysiological evaluation were observed.

Conclusion  Using RMS demonstrated benefits in speech perception, social interaction, and behavior in adolescents and children with ASD. Further studies are needed to define protocols and indication parameters in this population.

Keywords

Autism Spectrum Disorder; Remote Microphone; Auditory Perception; Children; Teens

Referencias

1 Nelson LH, Anderson K, Whicker J, Barrett T, Muñoz K, White K. Classroom listening experiences of students who are deaf or hard of hearing using listening inventory for education–revised. Lang Speech Hear Serv Sch. 2020;51(3):720-33. http://doi.org/10.1044/2020_LSHSS-19-00087. PMid:32392436.

2 APA: American Psychiatric Association. Transtorno do Espectro Autista. Manual diagnóstico e estatístico de transtornos mentais. DSM-5. Porto Alegre: Artmed; 2014.

3 Schafer EC, Gopal KV, Mathews L, Thompson S, Kaiser K, McCullough S, et al. Effects of auditory training and remote microphone technology on the behavioral performance of children and young adults who have autism spectrum disorder. J Am Acad Audiol. 2019;30(5):431-43. http://doi.org/10.3766/jaaa.18062. PMid:31070123.

4 Feldman JI, Thompson E, Davis H, Keceli-Kaysili B, Dunham K, Woynaroski T, et al. Remote microphone systems can improve listening-in-noise accuracy and listening effort for youth with autism. Ear Hear. 2022;43(2):436-47. http://doi.org/10.1097/AUD.0000000000001058. PMid:35030553.

5 Benítez-Barrera CR, Angley GP, Tharpe AM. Remote microphone system use at home: impact on caregiver talk. J Speech Lang Hear Res. 2018;61(2):399-409. http://doi.org/10.1044/2017_JSLHR-H-17-0168. PMid:29330553.

6 Benítez-Barrera CR, Thompson EC, Angley GP, Woynaroski T, Tharpe AM. Remote microphone system use at home: impact on child-directed speech. J Speech Lang Hear Res. 2019;62(6):2002-8. http://doi.org/10.1044/2019_JSLHR-H-18-0325. PMid:31112670.

7 Thompson EC, Benítez-Barrera CR, Angley GP, Woynaroski T, Tharpe AM. Remote microphone system use in the homes of children with hearing loss: impact on caregiver communication and child vocalizations. J Speech Lang Hear Res. 2020;63(2):633-42. http://doi.org/10.1044/2019_JSLHR-19-00197. PMid:31967941.

8 Young D, McPherson B, Hickson L, Lawson M. Preferred FM system listening levels of children with central auditory processing disorders. Annual Summer Institute of the Academy-of-Rehabilitative-Audiology. 1997.

9 Phonak. Ear-level FM receiver stimulates auditory neural plasticity in children with APD. Field Study News [Internet]. 2006 [citado em 2023 Set 10]. Disponível em: https://www.phonakpro.com/content/dam/phonakpro/gc_hq/fr/resources/evidence/field_studies/FSN_2006_EAr-level%20FM%20receiver%20stimulates%20auditory%20neural%20plasticity%20in%20children%20with%20APD_GB.pdf

10 Sharma M, Purdy SC. A case study of an 11-year-old with auditory processing disorder. Aust N Z J Audiol. 2007;29(1):40-52. http://doi.org/10.1375/audi.29.1.40.

11 Barker RE. Running head: experiences of remote microphone systems [thesis]. Canterbury: School of Psychology, Speech and Hearing University of Canterbury; 2020.

12 Phonak. Roger DigiMaster 5000 [Internet]. 2013 [citado em 2023 Set 10]. Disponível em: https://www.phonakpro.com/content/dam/phonakpro/gc_hq/en/products_solutions/wireless_accessories/roger_dynamic_soundfield/documents/datasheet_roger_dynamic_soundfield_digimaster_5000.pdf

13 Audiology Australia Submission. NDIA Consultation Paper: Interventions for children on the autism spectrum [Internet]. 2021 [citado em 2023 Ago 6]. Disponível em: https://audiology.asn.au/Tenant/C0000013/Submission%20to%20NDIA%20on%20interventions%20for%20children%20on%20the%20autism%20spectrum.pdf

14 Tricco AC, Lillie E, Zarin W, O’Brien KK, Colquhoun H, Levac D, et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): checklist and Explanation. Ann Intern Med. 2018;169(7):467-73. http://doi.org/10.7326/M18-0850. PMid:30178033.

15 Schafer EC, Mathews L, Mehta S, Hill M, Munoz A, Bishop R, et al. Personal FM systems for children with autism spectrum disorders (ASD) and/or attention-deficit hyperactivity disorder (ADHD): an initial investigation. J Commun Disord. 2013;46(1):30-52. http://doi.org/10.1016/j.jcomdis.2012.09.002. PMid:23123089.

16 Schafer EC, Traber J, Layden P, Amin A, Sanders K, Bryant D, et al. Use of wireless technology for children with auditory processing disorders, attention-deficit hyperactivity disorder, and language disorders. Semin Hear. 2014;35(3):193-205. http://doi.org/10.1055/s-0034-1383504.

17 Schafer EC, Wright S, Anderson C, Jones J, Pitts K, Bryant D, et al. Assistive technology evaluations: remote-microphone technology for children with Autism Spectrum Disorder. J Commun Disord. 2016;64:1-17. http://doi.org/10.1016/j.jcomdis.2016.08.003. PMid:27592101.

18 Keller MA, Tharpe AM, Bodfish J. Remote microphone system use in preschool children with autism spectrum disorder and language disorder in the classroom: a pilot efficacy study. Am J Speech Lang Pathol. 2021;30(1):266-78. http://doi.org/10.1044/2020_AJSLP-20-00056. PMid:33201722.

19 Keller MA. Listening difficulty in children with autism spectrum disorder: evaluation and intervention [dissertation]. Nashville: Faculty of the Graduate School of Vanderbilt University; 2021.

20 Rance G, Saunders K, Carew P, Johansson M, Tan J. The use of listening devices to ameliorate auditory deficit in children with autism. J Pediatr. 2014;164(2):352-7. http://doi.org/10.1016/j.jpeds.2013.09.041. PMid:24183205.

21 Rance G, Chisari D, Saunders K, Rault JL. Reducing listening-related stress in school-aged children with autism spectrum disorder. J Autism Dev Disord. 2017;47(7):2010-22. http://doi.org/10.1007/s10803-017-3114-4. PMid:28389756.

22 Leung JH, Purdy SC, Corballis PM. Improving emotion perception in children with autism spectrum disorder with computer-based training and hearing amplification. Brain Sci. 2021;11(4):469. http://doi.org/10.3390/brainsci11040469. PMid:33917776.

23 Brasil. Portaria No 3, de 19 de fevereiro de 2020. Torna pública a decisão de ampliar o uso do Sistema de Frequência Modulada Pessoal para indivíduos com deficiência auditiva de qualquer idade matriculados em qualquer nível acadêmico, no âmbito do Sistema Único de Saúde - SUS [Internet]. Diário Oficial da União; 2020 [citado em 2023 Ago 6]. Disponível em: https://www.in.gov.br/web/dou/-/portaria-n-3-de-19-de-fevereiro-de-2020-244302714?fbclid=IwAR0mct-oi2OB79wWdqBwr-YfQnH6PLDjCp2P1vTk4ycEZklAQnLfRJaCnso

24 Sanz-Cervera P, Pastor-Cerezuela G, González-Sala F, Tárraga-Mínguez R, Fernández-Andrés MI. Sensory processing in children with autism spectrum disorder and/or attention deficit hyperactivity disorder in the home and classroom contexts. Front Psychol. 2017;8:8. http://doi.org/10.3389/fpsyg.2017.01772. PMid:29075217.

25 Posar A, Visconti P. Sensory abnormalities in children with autism spectrum disorder. J Pediatr (Rio J). 2018;94(4):342-50. https://doi.org/10.1016/j.jped.2017.08.008.

26 Campelo LD, Lucena JA, de Lima CN, de Araújo HMM, Viana LGO, Veloso MML, et al. Autismo: um estudo de habilidades comunicativas em crianças. Rev CEFAC. 2009;11(4):598-606. http://doi.org/10.1590/S1516-18462009000800008.

27 de Campos LK, Fernandes FDM. Perfil escolar e as habilidades cognitivas e de linguagem de crianças e adolescentes do espectro do autismo. CoDAS. 2016;28(3):234-43. http://doi.org/10.1590/2317-1782/20162015023.

28 Colella-Santos MF, Bragato GR, Martins PMF, Dias AB. Triagem auditiva em escolares de 5 a 10 anos. Rev CEFAC. 2009;11(4):644-53. http://doi.org/10.1590/S1516-18462009000800013.

29 Costa KTL. Análise da avaliação audiológica e de hipersensibilidade em crianças com risco para o transtorno do espectro autista [dissertação]. Natal: Universidade Federal do Rio Grande do Norte; 2021.

30 Benítez-Barrera CR, Grantham DW, Hornsby BWY. The challenge of listening at home: speech and noise levels in homes of young children with hearing loss. Ear Hear. 2020;41(6):1575-85. http://doi.org/10.1097/AUD.0000000000000896. PMid:33136633.

31 Kappel V, Moreno ACP, Buss CH. Plasticity of the auditory system: theoretical considerations. Rev Bras Otorrinolaringol (Engl Ed). 2011;77(5):670-4. PMid:22030979.

32 Bertachini ALL, Pupo AC, Morettin M, Martinez MAN, Bevilacqua MC, Moret ALM, et al. Frequency modulation system and speech perception in the classroom: a systematic literature review. CoDAS. 2015;27(3):292-300. http://doi.org/10.1590/2317-1782/20152014103. PMid:26222948.

33 de Carvalho DS, Pedruzzi CM. Uso do sistema de frequência modulada por escolares com perda auditiva. Distúrb Comun. 2019;31(1):12-21. http://doi.org/10.23925/2176-2724.2019v31i1p12-21.

34 Spósito C, Carneiro LA, Bento BCS, Bucuvic ÉC, Jacob RTS. Resistência ao uso do Sistema FM por crianças e adolescentes: fato ou mito? Uma análise de prontuários de pacientes atendidos em um serviço de saúde auditiva. Rev CEFAC. 2023;25(1):e8022. http://doi.org/10.1590/1982-0216/20232518022s.

35 Koiek S, Pourbakht A, Mahdavi ME, Tahaei AA. Acceptable noise level in learning disordered children. Aud Vest Res. 2018;27(2):86-92.

36 Freyaldenhoven MC, Smiley DF. Acceptance of background noise in children with normal hearing. J Educ Audiol. 2006;13:27-31.

37 Peterson GE, Lehiste I. Revised CNC lists for auditory tests. J Speech Hear Disord. 1962;27(1):62-70. http://doi.org/10.1044/jshd.2701.62. PMid:14485785.

38 Bode DL, Carhart R. Estimating CNC discrimination with spondee words. J Acoust Soc Am. 1975;57(5):1216-8. http://doi.org/10.1121/1.380549. PMid:1127177.

39 Causey GD, Hood LJ, Hermanson CL, Bowling LS. The Maryland CNC Test: normative studies. Audiology. 1984;23(6):552-68. http://doi.org/10.3109/00206098409081538. PMid:6517748.

40 Mendel LL, Mustain WD, Magro J. Normative data for the Maryland CNC Test. J Am Acad Audiol. 2014;25(8):775-81. http://doi.org/10.3766/jaaa.25.8.7. PMid:25380123.

41 Alcántara JI, Cope TE, Cope W, Weisblatt EJ. Auditory temporal-envelope processing in high-functioning children with Autism Spectrum Disorder. Neuropsychologia. 2012;50(7):1235-51. http://doi.org/10.1016/j.neuropsychologia.2012.01.034. PMid:22349444.

42 Cameron S, Dillon H, Newall P. The listening in spatialized noise test: an auditory processing disorder study. J Am Acad Audiol. 2006;17(5):306-20. http://doi.org/10.3766/jaaa.17.5.2. PMid:16796298.

43 Killion MC, Niquette PA, Revit LJ, Skinner MW. Quick SIN and BKB-SIN, two new speech-in-noise tests permitting SNR-50 estimates in 1 to 2 min. J Acoust Soc Am. 2001;109(5):2502. https://doi.org/10.1121/1.4744912.

44 Ng SL, Meston CN, Scollie SD, Seewald RC. Adaptation of the BKB-SIN Test for use as a pediatric aided outcome measure. J Am Acad Audiol. 2011;22(6):375-86. http://doi.org/10.3766/jaaa.22.6.6. PMid:21864474.

45 Gifford RH, Shallop JK, Peterson AM. Speech recognition materials and ceiling effects: considerations for cochlear implant programs. Audiol Neurotol. 2008;13(3):193-205. http://doi.org/10.1159/000113510. PMid:18212519.

46 Wilson RH, McArdle RA, Smith SL. An evaluation of the BKB-SIN, HINT, QuickSIN, and WIN materials on listeners with normal hearing and listeners with hearing loss. J Speech Lang Hear Res. 2007;50(4):844-56. http://doi.org/10.1044/1092-4388(2007/059). PMid:17675590.

47 Donaldson GS, Chisolm TH, Blasco GP, Shinnick LJ, Ketter KJ, Krause JC. BKB-SIN and ANL predict perceived communication ability in cochlear implant users. Ear Hear. 2009;30(4):401-10. http://doi.org/10.1097/AUD.0b013e3181a16379. PMid:19390441.

48 Holder JT, Sheffield SW, Gifford RH. Speech understanding in children with normal hearing. Otol Neurotol. 2016;37(2):e50-5. http://doi.org/10.1097/MAO.0000000000000907. PMid:26756155.

49 Holder JT, Levin LM, Gifford RH. Speech Recognition in noise for adults with normal hearing: age-normative performance for AzBio, BKB-SIN, and QuickSIN. Otol Neurotol. 2018;39(10):e972-8. http://doi.org/10.1097/MAO.0000000000002003. PMid:30247429.

50 Gil, D. Treinamento auditivo formal em adultos com deficiência auditivo [tese]. São Paulo: Programa de Pós-graduação em Distúrbios da Comunicação Humana, Universidade Federal de São Paulo; 2006.

51 Kuk F, Jackson A, Keenan D, Lau CC. Personal amplification for school-age children with auditory processing disorders. J Am Acad Audiol. 2008;19(6):465-80. http://doi.org/10.3766/jaaa.19.6.3. PMid:19253780.

52 Wilson WJ, Jackson A, Pender A, Rose C, Wilson J, Heine C, et al. The CHAPS, SIFTER, and TAPS–R as Predictors of (C)AP Skills and (C)APD. J Speech Lang Hear Res. 2011;54(1):278-91. http://doi.org/10.1044/1092-4388(2010/09-0273). PMid:20689023.

53 Flores NGC, Iório MCM. Limitação de atividades em idosos: estudo em novos usuários de próteses auditivas por meio do questionário APHAB. Rev Soc Bras Fonoaudiol. 2012;17(1):47-53. http://doi.org/10.1590/S1516-80342012000100010.

54 Donadon C, Pinto SNFR, Couto CM, Colella-Santos MF. Questionnaire children’s auditory performance scale: translation and adaptation into Brazilian Portuguese [monograph]. Campinas: Programa de Pós-Graduação Latu Sensu da Faculdade de Ciências Médicas, Universidade Estadual de Campinas; 2015.

55 Loo JHY, Rosen S, Bamiou DE. Auditory training effects on the listening skills of children with auditory processing disorder. Ear Hear. 2016;37(1):38-47. http://doi.org/10.1097/AUD.0000000000000225. PMid:26418044.

56 Heflinger CA, Simpkins CG, Combs-Orme T. Using the CBCL to determine the clinical status of children in state custody. Child Youth Serv Rev. 2000;22(1):55-73. http://doi.org/10.1016/S0190-7409(99)00073-0.

57 Ferdinand RF. Validity of the CBCL/YSR DSM-IV scales anxiety problems and affective problems. J Anxiety Disord. 2008;22(1):126-34. http://doi.org/10.1016/j.janxdis.2007.01.008. PMid:17321103.

58 Ayer L, Althoff R, Ivanova M, Rettew D, Waxler E, Sulman J, et al. Child Behavior Checklist Juvenile Bipolar Disorder (CBCL‐JBD) and CBCL Posttraumatic Stress Problems (CBCL‐PTSP) scales are measures of a single dysregulatory syndrome. J Child Psychol Psychiatry. 2009;50(10):1291-300. http://doi.org/10.1111/j.1469-7610.2009.02089.x. PMid:19486226.

59 Bolsoni-Silva AT, Silveira AMS, Cunha EV, Silva LL, Orti NP. Problemas de comportamento e funcionamento adaptativo no teacher’s report form (TRF): comparações por gênero e escolaridade. Gerais Rev. Interinst. Psicol. 2016;9(1):141-55.

60 Lyons-Warren AM, Wangler MF, Wan YW. Cluster analysis of short sensory profile data reveals sensory-based subgroups in autism spectrum disorder. Int J Mol Sci. 2022;23(21):13030. http://doi.org/10.3390/ijms232113030. PMid:36361815.

61 O’Brien J, Tsermentseli S, Cummins O, Happé F, Heaton P, Spencer J. Discriminating children with autism from children with learning difficulties with an adaptation of the Short Sensory Profile. Early Child Dev Care. 2009;179(4):383-94. http://doi.org/10.1080/03004430701567926.

62 Tomchek SD, Dunn W. Sensory processing in children with and without autism: a comparative study using the short sensory profile. Am J Occup Ther. 2007;61(2):190-200. http://doi.org/10.5014/ajot.61.2.190. PMid:17436841.

63 Williams ZJ, Failla MD, Gotham KO, Woynaroski TG, Cascio C. Psychometric evaluation of the short sensory profile in youth with autism spectrum disorder. J Autism Dev Disord. 2018;48(12):4231-49. http://doi.org/10.1007/s10803-018-3678-7. PMid:30019274.

64 Hellhammer DH, Wüst S, Kudielka BM. Salivary cortisol as a biomarker in stress research. Psychoneuroendocrinology. 2009;34(2):163-71. http://doi.org/10.1016/j.psyneuen.2008.10.026. PMid:19095358.

65 Fiorezi JN, Franke SIR, Prá D, Garcia EL, Renner JDP. Os efeitos da música em biomarcadores de estresse, imunológicos e comportamentais em portadores do espectro autista. Cinergis. 2017;18:367. http://doi.org/10.17058/cinergis.v18i0.11174.

66 Tordjman S, Anderson GM, Kermarrec S, Bonnot O, Geoffray MM, Brailly-Tabard S, et al. Altered circadian patterns of salivary cortisol in low-functioning children and adolescents with autism. Psychoneuroendocrinology. 2014;50:227-45. http://doi.org/10.1016/j.psyneuen.2014.08.010. PMid:25244637.

67 Ogawa S, Lee YA, Yamaguchi Y, Shibata Y, Goto Y. Associations of acute and chronic stress hormones with cognitive functions in autism spectrum disorder. Neuroscience. 2017;343:229-39. http://doi.org/10.1016/j.neuroscience.2016.12.003. PMid:27956063.

68 Corbett BA, Simon D. Adolescence, stress and cortisol in autism spectrum disorders. OA Autism. 2014;1(1):2. PMid:24665363.

69 Trejos-Herrera AM, Bahamón MJ, Alarcón-Vásquez Y, Vélez JI, Vinaccia S. Validity and reliability of the multidimensional scale of perceived social support in colombian adolescents. Interv Psicosoc. 2018;27(1):56-63. http://doi.org/10.5093/pi2018a1.

70 Themas L, Lippus P, Padrik M, Kask L, Kreegipuu K. Maturation of the mismatch response in pre-school children: systematic literature review and meta-analysis. Neurosci Biobehav Rev. 2023;153:105366. http://doi.org/10.1016/j.neubiorev.2023.105366. PMid:37633625.

71 Uhler KM, Hunter SK, Tierney E, Gilley PM. The relationship between mismatch response and the acoustic change complex in normal hearing infants. Clin Neurophysiol. 2018;129(6):1148-60. http://doi.org/10.1016/j.clinph.2018.02.132. PMid:29635099.

72 ASHA: American Speech-language-hearing Association. Central auditory processing disorder [Internet]. 2005 [citado em 2023 Set 10]. Disponível em: https://www.asha.org/practice-portal/clinical-topics/central-auditory-processing-disorder/#collapse_7
 


Submitted date:
19/12/2024

Accepted date:
15/07/2024

67bf74a8a95395076377a494 codas Articles

CoDAS

Share this page
Page Sections