CoDAS
https://codas.org.br/article/doi/10.1590/2317-1782/20242023333en
CoDAS
Original Article

Laryngeal photobiomodulation: application sites, interferences from body mass index and skin phototype

Elisa Meiti Ribeiro Lin Plec; Viviane Souza Bicalho Bacelete; Marco Aurélio Rocha Santos; Ana Cristina Côrtes Gama

Downloads: 0
Views: 52

Abstract

ABSTRACT: Purpose: Establish points on the neck, correspondent to the laryngeal topography, where to apply Low Level Light therapy (LLLT), to evaluate the incidence of light through variables such as skin phototype and body mass index (BMI).

Methods: This is a cross-sectional, analytical, observational study, carried out with 15 vocally healthy women, between 18 and 50 years of age, who were divided into three groups, according to BMI and skin phototype. Six anatomical reference points were established to locate the larynx and its musculature, with visual monitoring by videonasolaryngoscopy, to assess light reach (present/absent) and degree of illumination (from very weak to very strong) in the larynx during the LASER application at doses of 3J, 6J and 9J. A flexible endoscope was used for visual monitoring during the LASER application, and subsequent image analysis.

Results: The light reached the larynx at doses of 3J, 6J and 9J, in the anterior commissure of the vocal folds, membranous (thyroarytenoid muscle) and cartilaginous portions of the vocal fold and the cricothyroid muscle. The degree of LASER light illumination decreased in overweight and obese participants and increased in moderate brown and dark brown skin phototypes.

Conclusion: Data suggest that the LLLT penetrates differently according to skin phototype and BMI, being more evident in individuals with Fitzpatrick IV and V phototypes and less evident with higher BMI levels. The evidence that the LASER light reaches the larynx in specific anatomical points provides direction for the standardization of its use in voice practice.

Keywords

Anatomy, Larynx, Low Level Light Therapy, Voice, Laser Therapy

Referencias

1 Anders JJ, Arany PR, Baxter GD, Lanzafame RJ. Light-emitting diode therapy and low-level light therapy are photobiomodulation therapy. Photobiomodul Photomed Laser Surg. 2019;37(2):63-5. http://doi.org/10.1089/photob.2018.4600. PMid:31050924.

2 Karu TI. Molecular mechanism of the therapeutic effect of low-intensity laser radiation. Lasers Life Sci. 1988;2(1):53-74.

3 Chaudary S, Karner L, Weidinger A, Meixner B, Rieger S, Metzger M, et al. In vitro effects of 635 nm photobiomodulation under hypoxia/reoxygenation culture conditions. J Photochem Photobiol B. 2020;209:111935. http://doi.org/10.1016/j.jphotobiol.2020.111935. PMid:32622295.

4 Ferraresi C, Kaippert B, Avci P, Huang YY, de Sousa MV, Bagnato VS, et al. Low-level laser (light) therapy increases mitochondrial membrane potential and ATP synthesis in C2C12 myotubes with a peak response at 3-6 h. Photochem Photobiol. 2015;91(2):411-6. http://doi.org/10.1111/php.12397. PMid:25443662.

5 Ash C, Dubec M, Donne K, Bashford T. Effect of wavelength and beam width on penetration in light-tissue interaction using computational methods. Lasers Med Sci. 2017;32(8):1909-18. http://doi.org/10.1007/s10103-017-2317-4. PMid:28900751.

6 Yadav A, Gupta A. Noninvasive red and near-infrared wavelength-induced photobiomodulation: promoting impaired cutaneous wound healing. Photodermatol Photoimmunol Photomed. 2017;33(1):4-13. http://doi.org/10.1111/phpp.12282. PMid:27943458.

7 Hashmi JT, Huang YY, Sharma SK, Kurup DB, Taboada LD, Carroll JD, et al. Effect of pulsing in low-level light therapy. Lasers Surg Med. 2010;42(6):450-66. http://doi.org/10.1002/lsm.20950. PMid:20662021.

8 Bacelete VSB, Gama ACC. Therapeutic effects of photobiomodulation in the speech-language-hearing clinic: an integrative literature review. Rev CEFAC. 2021;23(1):e9120. http://doi.org/10.1590/1982-0216/20212319120.

9 Freitas LF, Hamblin MR. Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J Sel Top Quantum Electron. 2016;22(3):7000417. http://doi.org/10.1109/JSTQE.2016.2561201. PMid:28070154.

10 Kagan LS, Heaton JT. The effectiveness of low-level light therapy in attenuating vocal fatigue. J Voice. 2017;31(3):384.e15-23. http://doi.org/10.1016/j.jvoice.2016.09.004. PMid:27839705.

11 Lou Z, Gong T, Kang J, Xue C, Ulmschneider C, Jiang JJ. The effects of photobiomodulation on vocal fold wound healing: in vivo and in vitro studies. Photobiomodul Photomed Laser Surg. 2019;37(9):532-8. http://doi.org/10.1089/photob.2019.4641. PMid:31503536.

12 Lou Z, Zhang C, Gong T, Xue C, Scholp A, Jiang JJ. Wound-healing effects of 635-nm low-level laser therapy on primary human vocal fold epithelial cells: an in vitro study. Lasers Med Sci. 2019;34(3):547-54. http://doi.org/10.1007/s10103-018-2628-0. PMid:30244401.

13 Marinho RR, Matos RM, Santos JS, Ribeiro MAG, Ribeiro RA, Lima RC Jr, et al. Potencial efeito antiinflamatório da terapia com laser de baixa potência na laringite de refluxo experimental: um estudo preliminar. Lasers Med Sci. 2014;29:239-43. http://doi.org/10.1007/s10103-013-1323-4. PMid:23613090.

14 Zonios G, Bykowski J, Kollias N. Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy. J Invest Dermatol. 2001;117(6):1452-7. http://doi.org/10.1046/j.0022-202x.2001.01577.x. PMid:11886508.

15 Goossens GH. The metabolic phenotype in obesity: fat mass, body fat distribution, and adipose tissue function. Obes Facts. 2017;10(3):207-15. http://doi.org/10.1159/000471488. PMid:28564650.

16 Sharma AM, Kushner RF. A proposed clinical staging system for obesity. Int J Obes. 2009;33(3):289-95. http://doi.org/10.1038/ijo.2009.2. PMid:19188927.

17 Riley PA. Melanin. Int J Biochem Cell Biol. 1997;29(11):1235-9. http://doi.org/10.1016/S1357-2725(97)00013-7. PMid:9451820.

18 Gupta V, Sharma VK. Skin typing: fitzpatrick grading and others. Clin Dermatol. 2019;37(5):430-6. http://doi.org/10.1016/j.clindermatol.2019.07.010. PMid:31896400.

19 Almeida AAF, Behlau M. A autopercepção da voz do adolescente. Rev Soc Bras Fonoaudiol. 2009;14(2):186-91. http://doi.org/10.1590/S1516-80342009000200008.

20 Bruzzi C, Salsi D, Minghetti D, Negri M, Casolino D, Sessa M. Presbiphonya. Acta Biomed. 2017;88(1):6-10. http://doi.org/10.23750/abm.v88i1.5266. PMid:28467327.

21 Navratil L, Kymplova J. Contraindications in noninvasive laser therapy: truth and fiction. J Clin Laser Med Surg. 2002;20(6):341-3. http://doi.org/10.1089/104454702320901134. PMid:12513921.

22 Jotz GP, Stefani MA, Costa OP Fo, Malysz T, Soster PR, Leão HZ. A morphometric study of the larynx. J Voice. 2014;28(6):668-72. http://doi.org/10.1016/j.jvoice.2014.03.008. PMid:24814367.

23 Eckel HE, Sittel C, Zorowka P, Jerke A. Dimensions of the laryngeal framework in adults. Surg Radiol Anat. 1994;16(1):31-6. http://doi.org/10.1007/BF01627918. PMid:8047966.

24 Ortug G, Liman Z, Ortug A. A dissectional study of the level of anterior commissure of the larynx. Ear Nose Throat J. 2021;100(10, Suppl):983S-8S. http://doi.org/10.1177/0145561320931213. PMid:32520604.

25 Isshiki N, Morita H, Okamura H, Hiramoto M. Thyroplasty as a new phonosurgical technique. Acta Otolaryngol. 1974;78(5-6):451-7. http://doi.org/10.3109/00016487409126379. PMid:4451096.

26 Laccourreye O, Rubin F, van Lith-Bijl J, Desuter G. Keys to successful type-1 thyroplasty with Montgomery® implant for unilateral laryngeal immobility in adults. Eur Ann Otorhinolaryngol Head Neck Dis. 2021;138(3):191-4. http://doi.org/10.1016/j.anorl.2020.10.001. PMid:33158759.

27 Isshiki N. Progress in laryngeal framework surgery. Acta Otolaryngol. 2000;120(2):120-7. http://doi.org/10.1080/000164800750000748. PMid:11603755.

28 Volk GF, Hagen R, Pototschnig C, Friedrich G, Nawka T, Arens C, et al. Laryngeal electromyography: a proposal for guidelines of the European Laryngological Society. Eur Arch Otorhinolaryngol. 2012;269(10):2227-45. http://doi.org/10.1007/s00405-012-2036-1. PMid:22576246.

29 Sataloff RT, Mandel S, Heman-Ackah Y, Abaza M. Laryngeal electromyography. 3rd ed. San Diego: Plural Publishing; 2017.

30 Klap P, Perrin A, Cohen M, Parmentier M. Comment faire une électromyographie laryngée? [How to do a laryngeal electromyography procedure?]. Ann Otolaryngol Chir Cervicofac. 2007;124(2):90-4. http://doi.org/10.1016/j.aorl.2007.02.002. PMid:17509515.

31 Correia PRB, Coêlho JF, Freire MLJ, Almeida LNA, Pernambuco LA, Alves GÂS. Photobiomodulation in speech-language-hearing therapy: a profile of professional practice and the level of information of Brazilian speech-language-hearing therapists. Rev CEFAC. 2021;23(3):e12920. http://doi.org/10.1590/1982-0216/202123312920.

32 Cinar U, Yigit O, Vural C, Alkan S, Kayaoglu S, Dadas B. Level of vocal folds as projected on the exterior thyroid cartilage. Laryngoscope. 2003;113(10):1813-6. http://doi.org/10.1097/00005537-200310000-00028. PMid:14520111.

33 Enver N, Can D. Erdog ̆an K, Hızır A, Bora B. A morphometric analysis of laryngeal anatomy: a cadaveric study. Turkish J Ear Nose Throat. 2018;28(2):71-7. http://doi.org/10.5606/Tr-ENT.2018.35229.

34 Sprinzl GM, Eckel HE, Sittel C, Pototschnig C, Koebke J. Morphometric measurements of the cartilaginous larynx: an anatomic correlate of laryngeal surgery. Head Neck. 1999;21(8):743-50. http://doi.org/10.1002/(SICI)1097-0347(199912)21:8<743::AID-HED10>3.0.CO;2-8. PMid:10562688.

35 Souza-Barros L, Dhaidan G, Maunula M, Solomon V, Gabison S, Lilge L, et al. Skin color and tissue thickness effects on transmittance, reflectance, and skin temperature when using 635 and 808 nm lasers in low intensity therapeutics. Lasers Surg Med. 2018;50(4):291-301. http://doi.org/10.1002/lsm.22760. PMid:29178437.

36 Bashkatov AN, Genina EA, Kochubey VI, Tuchin VV. Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J Phys D Appl Phys. 2005;38(15):2543-55. http://doi.org/10.1088/0022-3727/38/15/004.

37 Nussbaum EL, Zuylen JV. Transmission of light through human skinfolds: effects of physical characteristics, irradiation wavelength and skin-diode coupling relevant to phototherapy. Physiother Can. 2007;59(3):194-207. http://doi.org/10.3138/ptc.59.3.194.

38 Leal-Junior ECP, Lopes-Martins RÁB, Bjordal JM. Clinical and scientific recommendations for the use of photobiomodulation therapy in exercise performance enhancement and post-exercise recovery: current evidence and future directions. Braz J Phys Ther. 2019;23(1):71-5. http://doi.org/10.1016/j.bjpt.2018.12.002. PMid:30591412.

39 Alves VMN, Furlan RMMM, Motta AR. Immediate effects of photobiomodulation with low-level laser therapy on muscle performance: an integrative literature review. Rev CEFAC. 2019;21(4):e12019. http://doi.org/10.1590/1982-0216/201921412019.
 


Submitted date:
22/01/2024

Accepted date:
22/04/2024

6769e37ea95395092816c814 codas Articles
Links & Downloads

CoDAS

Share this page
Page Sections