CoDAS
https://codas.org.br/article/doi/10.1590/2317-1782/20232022327pt
CoDAS
Original Article

Medidas espectrais e cepstrais em mulheres com disfonia comportamental

Spectral and cepstral measurements in women with behavioral dysphonia

Gabriela Marques Paiva; Priscila Oliveira Costa Silva; Layla Jamilly Andrade da Silva; Kézia Alves Nascimento; Ana Beatriz da Veiga e Silva; Samuel Ribeiro de Abreu; Anna Alice Figueiredo de Almeida; Leonardo Wanderley Lopes

Downloads: 0
Views: 279

Resumo

RESUMO: Objetivo: Investigar se existem diferenças nas medidas acústicas cepstrais e espectrais entre mulheres com disfonia comportamental com e sem lesão laríngea, bem como verificar se existe correlação entre tais medidas e o julgamento perceptivo-auditivo da qualidade vocal.

Método: Participaram 78 mulheres com disfonia comportamental sem lesão laríngea (DCSL) e 68 com disfonia comportamental com lesão laríngea (nódulos vocais) (DCCL). Foram extraídas as medidas CPP (cepstral peak prominence), CPPS (cepstral peak prominence smoothed), declínio espectral e H1-H2 (diferença entre a amplitude do primeiro e do segundo harmônico), assim como o julgamento perceptivo-auditivo (JPA) do grau geral de desvio vocal (GG), graus de rugosidade (GR), de soprosidade (GS) e de tensão (GT).

Resultados: Mulheres com DCCL apresentaram maiores valores de H1-H2 e menores valores no CPP e CPPS, em relação às mulheres com DCSL. As vozes mais desviadas apresentaram menores valores do CPP e CPPS. As vozes soprosas apresentaram menores valores de CPP e CPPS, assim como maior valor de H1-H2 em relação às vozes rugosas. Houve correlação negativa fraca entre o CPP e o GR, negativa moderada com o GG e negativa forte com o GS. O CPPS apresentou correlação negativa moderada com o GG, GR e GS. A medida H1-H2 apresentou correlação positiva fraca com o GS. Houve correlação positiva fraca entre o declínio espectral e o GT.

Conclusão: As medidas acústicas H1-H2, CPP e CPPS apresentam diferenças entre mulheres com DCSL e DCCL. Além disso, há correlação entre as medidas cepstrais e espectrais e os diferentes parâmetros do JPA.

Palavras-chave

Voz, Qualidade Vocal, Acústica

Abstract

Purpose: To investigate whether there are differences in cepstral and spectral acoustic measures between women with behavioral dysphonia with and without laryngeal lesions and verify whether there is a correlation between such measures and the auditory-perceptual evaluation of voice quality.

Methods: The sample comprised 78 women with behavioral dysphonia without laryngeal lesions (BDWOL) and 68 with behavioral dysphonia with laryngeal lesions (vocal nodules) (BDWL). Cepstral peak prominence (CPP), cepstral peak prominence-smoothed (CPPS), spectral decrease, and H1-H2 (difference between the amplitude of the first and second harmonics) were extracted. They were submitted to the auditory-perceptual evaluation (APE) of the grade of hoarseness (GH), roughness (RO), breathiness (BR), and strain (ST).

Results: BDWL women had higher H1-H2 values and lower CPP and CPPS values than BDWOL women. More deviant voices had lower CPP and CPPS values. Breathy voices had lower CPP and CPPS values and higher H1-H2 values than rough ones. There was a weak negative correlation between CPP and RO, a moderate negative correlation with GH, and a strong negative correlation with BR. CPPS had a moderate negative correlation with GH, RO, and BR. H1-H2 had a weak positive correlation with BR. There was a weak positive correlation between spectral decrease and ST.

Conclusion: H1-H2, CPP, and CPPS were different between BDWOL and BDWL women. Furthermore, cepstral and spectral measures were correlated with the different APE parameters.

Keywords

Voice; Voice Disorders; Voice Quality; Acoustics

Referencias

1 Lopes L, Vieira V, Behlau M. Performance of different acoustic measures to discriminate individuals with and without voice disorders. J Voice. 2022;36(4):487-98. http://dx.doi.org/10.1016/j.jvoice.2020.07.008. PMid:32798120.

2 Brockmann-Bauser M, Drinnan MJ. Routine acoustic voice analysis: time to think again? Curr Opin Otolaryngol Head Neck Surg. 2011;19(3):165-70. http://dx.doi.org/10.1097/MOO.0b013e32834575fe. PMid:21483265.

3 Murton O, Hillman R, Mehta D. Cepstral peak prominence values for clinical voice evaluation. Am J Speech Lang Pathol. 2020;29(3):1596-607. http://dx.doi.org/10.1044/2020_AJSLP-20-00001. PMid:32658592.

4 Ben BB, Maryn Y, Gerrits E, de Bodt M. A meta-analysis: acoustic measurement of roughness and breathiness. J Speech Lang Hear Res. 2018;61(2):298-323. http://dx.doi.org/10.1044/2017_JSLHR-S-16-0188. PMid:29392295.

5 Patel RR, Awan SN, Barkmeier-Kraemer J, Courey M, Deliyski D, Eadie T, et al. Recommended protocols for instrumental assessment of voice: american speech-language-hearing association expert panel to develop a protocol for instrumental assessment of vocal function. Am J Speech Lang Pathol. 2018;27(3):887-905. http://dx.doi.org/10.1044/2018_AJSLP-17-0009. PMid:29955816.

6 Lopes LW, Sousa ESS, Silva ACF, Silva IM, Paiva MAA, Vieira VJD, et al. Cepstral measures in the assessment of severity of voice disorders. CoDAS. 2019;31(4):e20180175. http://dx.doi.org/10.1590/2317-1782/20182018175. PMid:31433040.

7 Hejná M, Šturm P, Tylečková L, Bořil T. Normophonic breathiness in czech and danish: are females breathier than males? J Voice. 2021;35(3):498.e1-22. http://dx.doi.org/10.1016/j.jvoice.2019.10.019. PMid:31902679.

8 van Stan JH, Mehta DD, Ortiz AJ, Burns JA, Toles LE, Marks KL, et al. Differences in weeklong ambulatory vocal behavior between female patients with phonotraumatic lesions and matched controls. J Speech Lang Hear Res. 2020;63(2):372-84. http://dx.doi.org/10.1044/2019_JSLHR-19-00065. PMid:31995428.

9 Mehta DD, Espinoza VM, van Stan JH, Zañartu M, Hillman RE. The difference between first and second harmonic amplitudes correlates between glottal airflow and neck-surface accelerometer signals during phonation. J Acoust Soc Am. 2019;145(5):EL386-92. http://dx.doi.org/10.1121/1.5100909. PMid:31153299.

10 Kreiman J, Gerratt BR, Garellek M, Samlan R, Zhang Z. Toward a unified theory of voice production and perception. Loquens. 2014;1(1):e009. http://dx.doi.org/10.3989/loquens.2014.009. PMid:27135054.

11 Zhang Z. Cause-effect relationship between vocal fold physiology and voice production in a three-dimensional phonation model. J Acoust Soc Am. 2016;139(4):1493-507. http://dx.doi.org/10.1121/1.4944754. PMid:27106298.

12 Bickley CA, Stevens KN. Effects of a vocal-tract constriction on the glottal source: experimental and modelling studies. J Phonetics. 1986;14(3-4):373-82. http://dx.doi.org/10.1016/S0095-4470(19)30711-9.

13 Zhang Z. Effect of vocal fold stiffness on voice production in a three-dimensional body-cover phonation model. J Acoust Soc Am. 2017;142(4):2311-21. http://dx.doi.org/10.1121/1.5008497. PMid:29092586.

14 Samlan RA, Story BH. Relation of structural and vibratory kinematics of the vocal folds to two acoustic measures of breathy voice based on computational modeling. J Speech Lang Hear Res. 2011;54(5):1267-83. http://dx.doi.org/10.1044/1092-4388(2011/10-0195). PMid:21498582.

15 Garellek M, Samlan R, Gerratt BR, Kreiman J. Modeling the voice source in terms of spectral slopes. J Acoust Soc Am. 2016;139(3):1404-10. http://dx.doi.org/10.1121/1.4944474. PMid:27036277.

16 van Houtte E, van Lierde K, Claeys S. Pathophysiology and treatment of muscle tension dysphonia: a review of the current knowledge. J Voice. 2011;25(2):202-7. http://dx.doi.org/10.1016/j.jvoice.2009.10.009. PMid:20400263.

17 Roy N, Merrill R, Thibeault S, Parsa R, Gray S, Smith EM. Prevalence of voice disorders in teachers and the general population. J Speech Lang Hear Res. 2004;47(2):281-93. http://dx.doi.org/10.1044/1092-4388(2004/023). PMid:15157130.

18 Hillman RE, Stepp CE, van Stan JH, Zañartu M, Mehta DD. An updated theoretical framework for vocal hyperfunction. Am J Speech Lang Pathol. 2020;29(4):2254-60. http://dx.doi.org/10.1044/2020_AJSLP-20-00104. PMid:33007164.

19 Pépiot E, Arnold A. Cross-gender differences in English/French bilingual speakers: a multiparametric study. Percept Mot Skills. 2021;128(1):153-77. http://dx.doi.org/10.1177/0031512520973514. PMid:33202192.

20 Yamasaki R, Madazio G, Leão SHS, Padovani M, Azevedo R, Behlau M. Auditory-perceptual evaluation of normal and dysphonic voices using the voice deviation scale. J Voice. 2017;31(1):67-71. http://dx.doi.org/10.1016/j.jvoice.2016.01.004. PMid:26873420.

21 Henton CG, Bladon RAW. Breathiness in normal female speech: inefficiency versus desirability. Lang Commun. 1985;5(3):221-7. http://dx.doi.org/10.1016/0271-5309(85)90012-6.

22 Samuel A, Moraes R, Lopes L. VoxMore: artefato tecnológico para auxiliar a avaliação acústica da voz no processo ensino-aprendizagem e prática clínica. CoDAS. 2023. No prelo.

23 Hillenbrand J, Cleveland RA, Erickson RL. Acoustic correlates of breathy vocal quality. J Speech Hear Res. 1994;37(4):769-78. http://dx.doi.org/10.1044/jshr.3704.769. PMid:7967562.

24 Hillenbrand J, Houde RA. Acoustic correlates of breathy vocal quality: dysphonic voices and continuous speech. J Speech Hear Res. 1996;39(2):311-21. http://dx.doi.org/10.1044/jshr.3902.311. PMid:8729919.

25 Brockmann-Bauser M, van Stan JH, Carvalho Sampaio M, Bohlender JE, Hillman RE, Mehta DD. Effects of vocal intensity and fundamental frequency on cepstral peak prominence in patients with voice disorders and vocally healthy controls. J Voice. 2021;35(3):411-7. http://dx.doi.org/10.1016/j.jvoice.2019.11.015. PMid:31859213.

26 Radish Kumar B, Bhat J, Mukhi P. Vowel harmonic amplitude differences in persons with vocal nodules. J Voice. 2011;25(5):559-61. http://dx.doi.org/10.1016/j.jvoice.2010.06.009. PMid:20926251.

27 Narasimhan SV, Vishal K. Spectral measures of hoarseness in persons with hyperfunctional voice disorder. J Voice. 2017;31(1):57-61. http://dx.doi.org/10.1016/j.jvoice.2016.03.005. PMid:27080591.

28 Mehta DD, Zaéartu M, Quatieri TF, Deliyski DD, Hillman RE. Investigating acoustic correlates of human vocal fold vibratory phase asymmetry through modeling and laryngeal high-speed videoendoscopy. J Acoust Soc Am. 2011;130(6):3999-4009. http://dx.doi.org/10.1121/1.3658441. PMid:22225054.

29 Cannito MP, Buder EH, Chorna LB. Spectral amplitude measures of adductor spasmodic dysphonic speech. J Voice. 2005;19(3):391-410. http://dx.doi.org/10.1016/j.jvoice.2004.07.001. PMid:16102666.

30 Holmberg EB, Doyle P, Perkell JS, Hammarberg B, Hillman RE. Aerodynamic and acoustic voice measurements of patients with vocal nodules: variation in baseline and changes across voice therapy. J Voice. 2003;17(3):269-82. http://dx.doi.org/10.1067/S0892-1997(03)00076-6. PMid:14513951.

31 Aaen M, McGlashan J, Thu KT, Sadolin C. Assessing and quantifying air added to the voice by means of laryngostroboscopic imaging, EGG, and acoustics in vocally trained subjects. J Voice. 2021;35(2):326.e1-11. http://dx.doi.org/10.1016/j.jvoice.2019.09.001. PMid:31628046.

32 Zhang Z. Mechanics of human voice production and control. J Acoust Soc Am. 2016;140(4):2614-35. http://dx.doi.org/10.1121/1.4964509. PMid:27794319.

33 Kreiman J, Gerratt BR. Perceptual sensitivity to first harmonic amplitude in the voice source. J Acoust Soc Am. 2010;128(4):2085-9. http://dx.doi.org/10.1121/1.3478784. PMid:20968379.
 


Submitted date:
16/12/2022

Accepted date:
20/03/2023

66577360a953955ec243c6f4 codas Articles

CoDAS

Share this page
Page Sections