Avaliação do modo respiratório por meio da termografia: um estudo piloto
Breathing mode assessment with thermography: a pilot study
Yasmim Carvalho Telson; Renata Maria Moreira Moraes Furlan; Rafael Augusto Magalhães Ferreira; Matheus Pereira Porto; Andréa Rodrigues Motta
Resumo
Palavras-chave
Abstract
Purpose: To present a method for analyzing breathing modes with infrared thermography.
Methods: This exploratory cross-sectional study used 38 thermal images of inspiration and expiration with nasal breathing and simulated mouth breathing in four nasal breathers without respiratory complaints. Three different data selection forms (line, rectangle, and ellipse) were used to extract the minimum, mean, and maximum temperatures of the regions of interest (nose and mouth) using the FLIR Tools® software.
Results: Among the three selection forms, there was greater temperature variability obtained with the line, revealing limitations in this measurement. There were no differences between the rectangle and ellipse values, showing that both selection forms present similar temperature extraction results. The comparison results between nose and mouth temperatures during inspiration and expiration indicated a statistically significant difference between all measurements, except for mean inspiration temperatures with the rectangle and ellipse. The breathing mode can be distinguished in both inspiration and expiration when using mean mouth temperatures with the rectangle and ellipse.
Conclusion: Breathing modes should be assessed based on mean mouth temperatures during inspiration, using the ellipse.
Keywords
References
1 Jiang S, Chan J, Stupak HD. The use of infrared thermal imaging to determine functional nasal adequacy: a pilot study. OTO Open. 2021;5(3):2473974X211045958.
2 Costa M, Valentim AF, Becker HMG, Motta AR. Achados da avaliação multiprofissional de crianças respiradoras orais. Rev CEFAC. 2015;17(3):864-78.
3 Melo DL, Santos RVM, Perilo TVC, Becker HMG, Motta AR. Avaliação do respirador oral: uso do espelho de Glatzel e do peak nasal inspiratory flow. CoDAS. 2013;25(3):236-41.
4 Chrzanowski K. Testing thermal imagers. Practical guide. Warsaw: Military University of Technology; 2010.
5 Côrte ACRE, Hernandez AJ. Termografia médica infravermelha aplicada à medicina do esporte. Rev Bras Med Esporte. 2016;22(4):315-9.
6 Sanches IJ, Gamba HR, Souza MA, Neves EB, Nohama P. Fusão 3D de imagens de MRI/CT e termografia. Rev Bras Eng Bioméd. 2013;29(3):298-308.
7 Novo MMM, Bitencourt CS, Tiba PRT, Silva DGM, Pandolfelli VC, Carlos S. Fundamentos básicos de emissividade e sua correlação com os materiais refratários, conservação de energia e sustentabilidade. Ceramica. 2014;60(353):22-33.
8 Hu M-H, Zhai G-T, Li D, Fan Y-Z, Chen X-H, Yang X-K. Synergetic use of thermal and visible imaging techniques for contactless and unobtrusive breathing measurement. J Biomed Opt. 2017;22(3):36006.
9 Kastl KG, Wiesmiller KM, Lindemann J. Dynamic infrared thermography of the nasal vestibules: a new method. Rhinology. 2009;47(1):89-92. PMid:19382503.
10 Vermeulen S, Barreto M, La Penna F, Prete A, Martella S, Biagiarelli F, et al. Exhaled breath temperature in children: reproducibility and influencing factors. J Asthma. 2014;51(7):743-50.
11 Hers V, Corbugy D, Joslet I, Hermant P, Demarteau J, Delhougne B, et al. New concept using Passive Infrared (PIR) technology for a contactless detection of breathing movement: a pilot study involving a cohort of 169 adult patients. J Clin Monit Comput. 2013;27(5):521-9.
12 Fei J, Pavlidis I, Murthy J. Thermal vision for sleep apnea monitoring. In: Yang GZ, Hawkes D, Rueckert D, Noble A, Taylor C. In: International Conference on Medical Image Computing and Computer-Assisted Intervention; 2009; London. Proceedings. Berlin: Springer; 2009. p. 1084-91.
13 Lindemann J, Wiesmiller K, Keck T, Kastl K. Dynamic nasal infrared thermography in patients with nasal septal perforations. Am J Rhinol Allergy. 2009;23(5):471-4.
14 Goldman LJ. Nasal airflow and thoracoabdominal motion in children using infrared thermographic video processing. Pediatr Pulmonol. 2012;47(5):476-86.
15 Klaessens JHGM, van den Born M, van der Veen A, Sikkens-van de Kraats J, van den Dungen FAM, Verdaasdonk RM. Development of a baby friendly non-contact method for measuring vital signs: first results of clinical measurements in an open incubator at a neonatal intensive care unit. In: Proceedings of Advanced Biomedical and Clinical Diagnostic Systems XII; 2014; San Francisco, California. Proceedings. USA: SPIE BiOS; 2014. 89351 p.
16 Pereira CB, Heimann K, Venema B, Blazek V, Czaplik M, Leonhardt S. Estimation of respiratory rate from thermal videos of preterm infants. Annu Int Conf IEEE Eng Med Biol Soc. 2017:3818-21..
17 Procházka A, Charvátová H, Vyšata O, Kopal J, Chambers J. Breathing analysis using thermal and depth imaging camera video records. Sensors (Basel). 2017;17(6):1408.
18 Pereira CB, Yu X, Czaplik M, Blazek V, Venema B, Leonhardt S. Estimation of breathing rate in thermal imaging videos: a pilot study on healthy human subjects. J Clin Monit Comput. 2017;31(6):1241-54.
19 Hu MH, Zhai GT, Li D, Fan YZ, Chen XH, Yang XK. Synergetic use of thermal and visible imaging techniques for contactless and unobtrusive breathing measurement. J Biomed Opt. 2017;22(3):36006.
20 AAT: American Academy of Thermology. Guidelines for dental-oral and systemic health infrared thermography. Pan American J Med Thermol. 2015;2(1):44-53.
21 Steketee J. Spectral emissivity of skin and pericardium. Phys Med Biol. 1973;18(5):686-94.
Submitted date:
01/03/2023
Accepted date:
08/02/2023