CoDAS
https://codas.org.br/article/doi/10.1590/2317-1782/20232022261
CoDAS
Artigo Original

Effect of inter-aural temporal envelope differences on inter-aural time difference thresholds for amplitude modulated noise

Vibha Kanagokar; Hasna Fathima; Jayashree Sunil Bhat; Arivudai Nambi Pitchai Muthu

Downloads: 0
Views: 62

Abstract

ABSTRACT: Purpose: The inter-aural time difference (ITD) and inter-aural level difference (ILD) are important acoustic cues for horizontal localization and spatial release from masking. These cues are encoded based on inter-aural comparisons of tonotopically matched binaural inputs. Therefore, binaural coherence or the interaural spectro-temporal similarity is a pre-requisite for encoding ITD and ILD. The modulation depth of envelope is an important envelope characteristic that helps in encoding the envelope-ITD. However, inter-aural difference in modulation depth can result in reduced binaural coherence and poor representation of binaural cues as in the case with reverberation, noise and compression in cochlear implants and hearing aids. This study investigated the effect of inter-aural modulation depth difference on the ITD thresholds for an amplitude-modulated noise in normal hearing young adults.

Methods: An amplitude modulated high pass filtered noise with varying modulation depth differences was presented sequentially through headphones. In one ear, the modulation depth was retained at 90% and in the other ear it varied from 90% to 50%. The ITD thresholds for modulation frequencies of 8 Hz and 16 Hz were estimated as a function of the inter-aural modulation depth difference.

Results: The Friedman test findings revealed a statistically significant increase in the ITD threshold with an increase in the inter-aural modulation depth difference for 8 Hz and 16 Hz.

Conclusion: The results indicate that the inter-aural differences in the modulation depth negatively impact ITD perception for an amplitude-modulated high pass filtered noise.

Keywords

Inter-Aural Time Difference, Modulation Depth, Inter-Aural Modulation Depth Difference, Modulation Frequency, Envelope

Referências

1 Middlebrooks JC. Sound localization. Handb Clin Neurol. 2015;129:99-116. http://dx.doi.org/10.1016/B978-0-444-62630-1.00006-8. PMid:25726265.

2 Glyde H, Buchholz JM, Dillon H, Cameron S, Hickson L. The importance of interaural time differences and level differences in spatial release from masking. J Acoust Soc Am. 2013;134(2):EL147-52. http://dx.doi.org/10.1121/1.4812441. PMid:23927217.

3 Joris PX, Yin TC. Responses to amplitude-modulated tones in the auditory nerve of the cat. J Acoust Soc Am. 1992;91(1):215-32. http://dx.doi.org/10.1121/1.402757. PMid:1737873.

4 Smith ZM, Delgutte B, Oxenham AJ. Chimaeric sounds reveal dichotomies in auditory perception. Nature. 2002;416(6876):87-90. http://dx.doi.org/10.1038/416087a.

5 Kerber S, Seeber BU. Localization in reverberation with cochlear implants: predicting performance from basic psychophysical measures. J Assoc Res Otolaryngol. 2013;14(3):379-92. http://dx.doi.org/10.1007/s10162-013-0378-z. PMid:23440517.

6 Devore S, Delgutte B. Effects of reverberation on the directional sensitivity of auditory neurons across the tonotopic axis: influences of interaural time and level differences. J Neurosci. 2010;30(23):7826-37. http://dx.doi.org/10.1523/JNEUROSCI.5517-09.2010. PMid:20534831.

7 Lorenzi C, Gilbert G, Carn H, Garnier S, Moore BCJ. Speech perception problems of the hearing impaired reflect inability to use temporal fine structure. Proc Natl Acad Sci USA. 2006;103(49):18866-9. http://dx.doi.org/10.1073/pnas.0607364103. PMid:17116863.

8 Narne VK. Temporal processing and speech perception in noise by listeners with auditory neuropathy. PLoS One. 2013;8(2):e55995. http://dx.doi.org/10.1371/journal.pone.0055995. PMid:23409105.

9 Bernstein LR, Trahiotis C. Lateralization produced by envelope-based interaural temporal disparities of high-frequency, raised-sine stimuli: empirical data and modeling. J Acoust Soc Am. 2011;129(3):1501-8. http://dx.doi.org/10.1121/1.3552875. PMid:21428514.

10 Monaghan JJM, Krumbholz K, Seeber BU. Factors affecting the use of envelope interaural time differences in reverberation. J Acoust Soc Am. 2013;133(4):2288-300. http://dx.doi.org/10.1121/1.4793270. PMid:23556596.

11 Hartmann WM, Rakerd B, Koller A. Binaural coherence in rooms. Acta Acust United Acust. 2005;91(3):451-62.

12 Laback B, Zimmermann I, Majdak P, Baumgartner W-D, Pok S-M. Effects of envelope shape on interaural envelope delay sensitivity in acoustic and electric hearing. J Acoust Soc Am. 2011;130(3):1515-29. http://dx.doi.org/10.1121/1.3613704. PMid:21895091.

13 Shamma S, Lorenzi C. On the balance of envelope and temporal fine structure in the encoding of speech in the early auditory system. J Acoust Soc Am. 2013;133(5):2818-33. http://dx.doi.org/10.1121/1.4795783. PMid:23654388.

14 Monaghan JJM, Bleeck S, McAlpine D. Sensitivity to envelope interaural time differences at high modulation rates. Trends Hear. 2015;19:1-14. http://dx.doi.org/10.1177/2331216515619331. PMid:26721926.

15 Monaghan JJM, Seeber BU. A method to enhance the use of interaural time differences for cochlear implants in reverberant environments. J Acoust Soc Am. 2016;140(2):1116-29. http://dx.doi.org/10.1121/1.4960572. PMid:27586742.

16 Seeber BU, Monaghan JJM. Envelope enhancement for improving hearing in reverberant spaces. In: AIA-DAGA 2013, International Conference on Acoustics. Merano: DAGAPUB; 2013. p. 1071-2.

17 Pitchaimuthu A, Grama Bhagavan S, Kanagokar V, Bhat JS. Effect of inter-aural modulation depth difference on interaural time difference thresholds for speech: an observational study. F1000 Res. 2020;9:115. http://dx.doi.org/10.12688/f1000research.21379.1. PMid:32765838.

18 Jeffress LA. A place theory of sound localization. J Comp Physiol Psychol. 1948;41(1):35-9. http://dx.doi.org/10.1037/h0061495. PMid:18904764.

19 Culling JF, Hawley ML, Litovsky RY. The role of head-induced interaural time and level differences in the speech reception threshold for multiple interfering sound sources. J Acoust Soc Am. 2004;116(2):1057-65. http://dx.doi.org/10.1121/1.1772396. PMid:15376672.

20 Bharadwaj HM, Masud S, Mehraei XG, Verhulst S, Shinn-cunningham XBG. Individual differences reveal correlates of hidden hearing deficits. J Neurosci. 2015;35(5):2161-72. http://dx.doi.org/10.1523/JNEUROSCI.3915-14.2015. PMid:25653371.

21 Goswami U, Leong V. Speech rhythm and temporal structure: converging perspectives? Lab Phonol. 2013;4(1):67-92. http://dx.doi.org/10.1515/lp-2013-0004.

22 Ding N, Patel AD, Chen L, Butler H, Luo C, Poeppel D. Temporal modulations in speech and music. Neurosci Biobehav Rev. 2017;81(Pt B):181-7. http://dx.doi.org/10.1016/j.neubiorev.2017.02.011. PMid:28212857.

23 Greenberg S, Carvey H, Hitchcock L, Chang S. Temporal properties of spontaneous speech: a syllable-centric perspective. J Phonetics. 2003;31(3–4):465-85. http://dx.doi.org/10.1016/j.wocn.2003.09.005.

24 Goupell MJ, Fong S, Stakhovskaya O. The effect of envelope modulations on binaural processing. Hear Res. 2019;379:117-27. http://dx.doi.org/10.1016/j.heares.2019.05.003. PMid:31154164.

25 Wang Q, Lu H, Wu Z, Li L. Neural representation of interaural correlation in human auditory brainstem: comparisons between temporal-fine structure and envelope. Hear Res. 2018;365:165-73. http://dx.doi.org/10.1016/j.heares.2018.05.015. PMid:29853322.

26 Wiinberg A, Jepsen ML, Epp B, Dau T. Effects of hearing loss and fast-acting compression on amplitude modulation perception and speech intelligibility. Ear Hear. 2019;40(1):45-54. http://dx.doi.org/10.1097/AUD.0000000000000589. PMid:29668566.

27 Wouters J, Doclo S, Koning R, Francart T. Sound processing for better coding of monaural and binaural cues in auditory prostheses. Proc IEEE. 2013;101(9):1986-97. http://dx.doi.org/10.1109/JPROC.2013.2257635.

28 Ihlefeld A, Litovsky RY. Interaural level differences do not suffice for restoring spatial release from masking in simulated cochlear implant listening. PLoS One. 2012;7(9):e45296. http://dx.doi.org/10.1371/journal.pone.0045296. PMid:23028914.
 


Submetido em:
07/11/2022

Aceito em:
26/04/2023

66578a75a9539568fe2fe873 codas Articles

CoDAS

Share this page
Page Sections