CoDAS
https://codas.org.br/article/doi/10.1590/2317-1782/20232022102
CoDAS
Original Article

Evaluation of the maximum tongue and lip pressure in individuals with Class I, II, or III Angle malocclusions and different facial types

Fernanda Alvarenga Guimarães Martins; Andréa Rodrigues Motta; Leniana Santos Neves; Renata Maria Moreira Moraes Furlan

Downloads: 1
Views: 446

Abstract

Purpose

To compare the maximum anterior and posterior tongue pressure, tongue endurance, and lip pressure in Class I, II, and III malocclusions and different facial types.

Methods

A cross-sectional observational analytical study was carried out in 55 individuals (29 men and 26 women) aged between 18 and 55 years. The participants were divided into groups according to Angle malocclusion (Class I, II, and III) and facial type. The maximum anterior and posterior tongue pressure, tongue endurance, and maximum lip pressure were measured using the IOPI (Iowa Oral Performance Instrument). To determine the facial type, the cephalometric analysis was accomplished using Ricketts VERT analysis as a reference.

Results

There was no statistically significant difference when comparing the maximum pressure of the anterior and posterior regions of the tongue, the maximum pressure of the lips, or the endurance of the tongue in the different Angle malocclusion types. Maximum posterior tongue pressure was lower in vertical individuals than in mesofacial individuals.

Conclusion

Tongue and lips pressure, as well as tongue endurance in adults was not associated with the type of malocclusion. However, there is an association between facial type and the posterior pressure of the tongue.

Keywords

Muscle Strength; Lip; Malocclusion, Angle Class I; Malocclusion, Angle Class II; Malocclusion, Angle Class III

Referências

  1. Stone M, Woo J, Lee J, Poole T, Seagraves A, Chung M, et al. Structure and variability in human tongue muscle anatomy. Comput Methods Biomech Biomed Eng Imaging Vis. 2018;6(5):499-507. http://dx.doi.org/10.1080/21681163.2016.1162752 PMid:30135746.
  2. Hara K, Tohara H, Kobayashi K, Yamaguchi K, Yoshimi K, Nakane A, et al. Age-related declines in the swallowing muscle strength of men and women aged 20-89 years: a cross-sectional study on tongue pressure and jaw-opening force in 980 subjects. Arch Gerontol Geriatr. 2018;78:64-70. http://dx.doi.org/10.1016/j.archger.2018.05.015 PMid:29902686.
  3. Yu M, Gao X. Tongue pressure distribution of individual normal occlusions and exploration of related factors. J Oral Rehabil. 2019;46(3):249-56. http://dx.doi.org/10.1111/joor.12741 PMid:30375017.
  4. Machida N, Tohara H, Hara K, Kumakura A, Wakasugi Y, Nakane A, et al. Effects of aging and sarcopenia on tongue pressure and jaw-opening force. Geriatr Gerontol Int. 2017;17(2):295-301. http://dx.doi.org/10.1111/ggi.12715 PMid:26800427.
  5. Smaoui S, Langridge A, Steele CM. The effect of lingual resistance training interventions on adult swallow function: a systematic review. Dysphagia. 2020;35(5):745-61. http://dx.doi.org/10.1007/s00455-019-10066-1 PMid:31612288.
  6. Abe T, Wong V, Spitz RW, Viana RB, Bell ZW, Yamada Y, et al. Influence of sex and resistance training status on orofacial muscle strength and morphology in healthy adults between the ages of 18 and 40: a cross-sectional study. Am J Hum Biol. 2020;32(6):e23401. http://dx.doi.org/10.1002/ajhb.23401 PMid:32030840.
  7. Azevedo ND, Lima JC, Furlan R, Motta AR. Tongue pressure measurement in children with mouth-breathing behaviour. J Oral Rehabil. 2018;45(8):612-7. http://dx.doi.org/10.1111/joor.12653 PMid:29782038.
  8. O’Connor-Reina C, Plaza G, Garcia-Iriarte MT, Ignacio-Garcia JM, Baptista P, Casado-Morente JC, et al. Tongue peak pressure: a tool to aid in the identification of obstruction sites in patients with obstructive sleep apnea/hypopnea syndrome. Sleep Breath. 2020;24(1):281-6. http://dx.doi.org/10.1007/s11325-019-01952-x PMid:31745755.
  9. Rosa RR, Bueno MDRS, Migliorucci RR, Brasolotto AG, Genaro KF, Berretin-Felix G. Tongue function and swallowing in individuals with temporomandibular disorders. J Appl Oral Sci. 2020;28:e20190355. http://dx.doi.org/10.1590/1678-7757-2019-0355 PMid:32267377.
  10. Lambrechts H, De Baets E, Fieuws S, Willems G. Lip and tongue pressure in orthodontics patients. Eur J Orthod. 2010;32(4):466-71. http://dx.doi.org/10.1093/ejo/cjp137 PMid:20089572.
  11. Silva JB, Giglio LD, Regalo SH, De Mello FV, Trawitzki LVV. Effect of dentofacial deformity on maximum isometric tongue strength. J Oral Rehabil. 2013;40(4):247-51. http://dx.doi.org/10.1111/joor.12020 PMid:23216277.
  12. Partal I, Aksu M. Changes in lips, cheeks and tongue pressures after upper incisor protusion in class II division 2 malocclusion: a prospective study. Prog Orthod. 2017;18(1):29. http://dx.doi.org/10.1186/s40510-017-0182-0 PMid:28944417.
  13. Kurabeishi H, Tatsuo R, Makoto N, Kazunori F. Relationship between tongue pressure and maxillofacial morphology in Japanese children based on skeletal classification. J Oral Rehabil. 2018;45(9):684-91. http://dx.doi.org/10.1111/joor.12680 PMid:29908035.
  14. Menezes LF, Rocha AM No, Paulino CEB, Laureano JR Fo, Studart-Pereira LM. Tongue pressure and endurance in patients with Class II and Class III malocclusion. Rev CEFAC. 2018;20(2):166-74. http://dx.doi.org/10.1590/1982-0216201820210917
  15. Fujita Y, Ohno Y, Ohno K, Takeshima T, Maki K. Differences in the factors associated with tongue pressure between children with class I and Class II malocclusions. BMC Pediatr. 2021;21(1):476. http://dx.doi.org/10.1186/s12887-021-02956-x PMid:34711201.
  16. Kuwajima Y, Kim G, Ishida Y, Matsumoto S, Ogawa K, Shimpo R, et al. Tongue pressure declines early on in patients with malocclusion. Appl Sci (Basel). 2022;12(9):4618. http://dx.doi.org/10.3390/app12094618
  17. Proffit WR, Ackerman JL, Sinclair PM, Thomas PM, Tulloch JFC. Ortodontia contemporânea. Rio de Janeiro: Guanabara Koogan; 1995.
  18. Berwig L, Silva AT, Côrrea E, Moraes A, Montenegro A, Ritzel R. Quantitative analysis of the hard palate in different facial typologies in nasal and mouth breathers. Rev CEFAC. 2012;14(4):616-25. http://dx.doi.org/10.1590/S1516-18462011005000134
     

19

Angle EH. Classification of malocclusion. Dent Cosmos. 1899;41(3):248-64.

20

Marchesan IQ. Protocolo de avaliação do frênulo da língua. Rev CEFAC. 2010;12(6):977-89. http://dx.doi.org/10.1590/S1516-18462010000600009
» http://dx.doi.org/10.1590/S1516-18462010000600009

21

Araújo MC, Nahás ACR, Cotrim-Ferreira FA, Carvalho PEG. Cephalometric study of the cranial base anatomy correlation with the facial pattern and apical bases. Rev Dent Press Ortodon Ortop Facial. 2008;13(4):67-79.

22

Dahlberg G. Statistical methods for medical and biological students. New York: Interscience Publications; 1940.

23

Sandler PJ. Reproducibility of cephalometric measurements. Br J Orthod. 1988;15(2):105-10. http://dx.doi.org/10.1179/bjo.15.2.105 PMid:3165025.
» http://dx.doi.org/10.1179/bjo.15.2.105

24

Adams V, Mathisen B, Baines S, Lazarus C, Callister R. Reliability of measurements of tongue and hand strength and endurance using the Iowa oral performance instrument with healthy adults. Dysphagia. 2014;29(1):83-95. http://dx.doi.org/10.1007/s00455-013-9486-5 PMid:24045852.
» http://dx.doi.org/10.1007/s00455-013-9486-5

25

Park HS, Kim J, Park J, Oh D, Kim HJ. Comparison of orbicularis oris muscle strength and endurance in young and elderly adults. J Phys Ther Sci. 2018;30(12):1477-8. http://dx.doi.org/10.1589/jpts.30.1477 PMid:30568338.
» http://dx.doi.org/10.1589/jpts.30.1477

26

Pereira AC, Jorge TM, Ribeiro Júnior PD, Berretin-Felix G. Characteristics of the oral functions of individuals with Class III malocclusion and different facial types. Dent Press Ortodon Ortop Facial. 2005;10(6):111-9. http://dx.doi.org/10.1590/S1415-54192005000600013
» http://dx.doi.org/10.1590/S1415-54192005000600013

27

Massey SN, Maurya RP, Tikku T, Agarwal A, Srivastava K, Tiwari K. Tongue pressure exerted on the loop of transpalatal arch in different craniofacial patterns. J Contemp Orthod. 2020;4(1):39-9.

28

Stål P, Marklund S, Thornell LE, De Paul R, Eriksson PO. Fibre composition of human intrinsic tongue muscles. Cells Tissues Organs. 2003;173(3):147-61. http://dx.doi.org/10.1159/000069470 PMid:12673097.
» http://dx.doi.org/10.1159/000069470

29

Miller JL, Watkin KL, Chen MF. Muscle, adipose, and connective tissue variations in intrinsic musculature of the adult human tongue. J Speech Lang Hear Res. 2002;45(1):51-65. http://dx.doi.org/10.1044/1092-4388(2002/004) PMid:14748638.
» http://dx.doi.org/10.1044/1092-4388(2002/004)

30

Berbert MCB, Brito VG, Furlan RMMM, Perilo TVC, Valentim AF, Barroso MFS, et al. Maximum protrusive tongue force in healthy young adults. Int J Orofacial Myology. 2014;40(1):56-63. http://dx.doi.org/10.52010/ijom.2014.40.1.5 PMid:27295848.
» http://dx.doi.org/10.52010/ijom.2014.40.1.5

31

Furlan RMMM, Valenti MF, Perilo TVC, Costa CG, Barroso MFS, Las Casas EB, et al. Quantitative evaluation of tongue protrusion force. Int J Orofacial Myology. 2010;36(1):33-43. http://dx.doi.org/10.52010/ijom.2010.36.1.4 PMid:23362601.
» http://dx.doi.org/10.52010/ijom.2010.36.1.4

32

Ricketts RM. Cephalometric analysis and synthesis. Angle Orthod. 1961;31(3):141-56.

65a87c1da9539554464fd804 codas Articles

CoDAS

Share this page
Page Sections