CoDAS
https://codas.org.br/article/doi/10.1590/2317-1782/20232022044en
CoDAS
Revisão Sistemática

Behavioral assessment of auditory processing in adulthood: population of interest and tests - a systematic review

Avaliação comportamental do processamento auditivo na idade adulta: população de interesse e testes - uma revisão sistemática

Pamela Papile Lunardelo; Marisa Tomoe Hebihara Fukuda; Ana Cecília Grilli Fernandes Stefanelli; Sthella Zanchetta;

Downloads: 1
Views: 406

Abstract

Purpose

To identify the behavioral tests used to assess auditory processing throughout adulthood, focusing on the characteristics of the target population as an interest group.

Research strategies

PubMed, CINAHL, Web of Science, and Scielo, databases were searched with descriptors: “auditory perception” or “auditory perception disorders” or “auditory processing” or “central auditory processing” or “auditory processing disorders” or “central auditory processing disorders” with adults OR aging.

Selection criteria

Studies with humans included, the adult population from 18 to 64 years old, who performed at least one behavioral test to assess auditory processing in the absence of hearing loss.

Data analysis

Data extraction was performed independently, using a protocol developed by the authors that included different topics, mainly the behavioral auditory tests performed and the results found.

Results

Of the 867 records identified, 24 contained the information needed to answer the survey questions.

Conclusion

Almost all studies were conducted verify performance in one or two auditory processing tests. The target target population was heterogeneous, with the most frequent persons with diabetes, stuttering, auditory processing disorder, and noise exposure. There is little information regarding benchmarks for testing in the respective age groups.

Keywords

Adults; Middle Aged; Young Adult; Auditory Processing; Auditory Processing Disorder; Systematic Review

Resumo

Objetivo

Identificar os testes comportamentais utilizados para a avaliação do processamento auditivo ao longo da vida adulta, com enfoque nas características da população alvo enquanto grupo de interesse.

Estratégia de pesquisa

As bases de dados consultadas foram o PubMed, CINAHL, Web of Science e Scielo, a partir dos descritores: “auditory perception” or “auditory perception disorders” or “auditory processing” or “central auditory processing” or “auditory processing disorders” or “central auditory processing disorders” com adults OR aging.

Critérios de seleção

 Incluiu-se estudos com humanos, que abordaram a população adulta de 18 a 64 anos, que realizaram pelo menos um teste comportamental para avaliação do processamento auditivo, na ausência de perda auditiva. Análise dos dados: Realizou-se a extração de dados de forma independente, a partir de um protocolo desenvolvido pelos autores incluindo diferentes tópicos, principalmente os testes auditivos comportamentais realizados e os resultados encontrados.

Resultados

 Dos 867 registros identificados, 24 foram selecionados como contendo as informações necessárias para responder às perguntas de pesquisa.

Conclusão

 Quase a totalidade dos estudos foi conduzida com objetivo de verificar o desempenho em um ou dois testes de processamento auditivo; a população alvo foi heterogênea, as mais frequentes foram diabetes, gagueira, transtorno do processamento auditivo e exposição ao ruído. Há poucas informações sobre os padrões de referência para os testes na respectiva faixa etária.

Palavras-chave

Adultos; Meia Idade; Adulto Jovem; Processamento Auditivo; Transtornos da Percepção Auditiva; Revisão Sistemática

Referências

  1. AAA: American Academy of Audiology [Internet]. American Academy of Audiology clinical practice guidelines: diagnosis, treatment and management of children and adults with central auditory processing disorder. Reston: American Academy of Audiology; 2010 [citado em 2016 Dez 16]. Disponível em: https://audiology-web.s3.amazonaws.com/migrated/CAPD%20Guidelines%208-2010.pdf_539952af956c79.73897613.pdf
     
  2. BSA: British Society of Audiology [Internet]. Practive guidance: an overview of current management of auditory processing disorder (APD). Fareham: British Society of Audiology; 2015 [citado em 2011 Out 17]. Disponível em: https://www.thebsa.org.uk/wp-content/uploads/2011/04/Current-APD-Management-2.pdf
  3. Iliadou VV, Ptok M, Grech H, Pedersen ER, Brechmann A, Deggouj N, et al. A European perspective on auditory processing disorder-current knowledge and future research focus. Front Neurol. 2017;8:622. http://dx.doi.org/10.3389/fneur.2017.00622 PMid:29209272.
  4. Davis AC. The prevalence of hearing impairment and reported hearing disability among adults in Great Britain. Int J Epidemiol. 1989;18(4):911-7. http://dx.doi.org/10.1093/ije/18.4.911 PMid:2621028.
  5. Saunders GH, Field DL, Haggard MP. A clinical test battery for obscure auditory dysfunction (OAD): development, selection and use of tests. Br J Audiol. 1992;26(1):33-42. http://dx.doi.org/10.3109/03005369209077869 PMid:1586847.
  6. Rappaport JM, Phillips DP, Gulliver JM. Disturbed speech intelligibility in noise despite a normal audiogram: a defect in temporal resolution? J Otolaryngol. 1993;22(6):447-53. PMid:8158743.
  7. Zhao F, Stephens D. A critical review of King-Kopetzky syndrome: hearing difficulties, but normal hearing? Audiol Med. 2007;5(2):119-24. http://dx.doi.org/10.1080/16513860701296421
  8. Kumar G, Amen F, Roy D. Normal hearing tests: is a further appointment really necessary? J R Soc Med. 2007;100(2):66. http://dx.doi.org/10.1177/014107680710000212 PMid:17277271.
  9. Hind SE, Haines-Bazrafshan R, Benton CL, Brassington W, Towle B, Moore DR. Prevalence of clinical referrals having hearing thresholds within normal limits. Int J Audiol. 2011;50(10):708-16. http://dx.doi.org/10.3109/14992027.2011.582049 PMid:21714709.
  10. Musiek FE, Shinn J, Chermak GD, Bamiou DE. Perspectives on the pure-tone audiogram. J Am Acad Audiol. 2017;28(7):655-71. http://dx.doi.org/10.3766/jaaa.16061 PMid:28722648.
  11. Jain C, Dwarakanath VM, Amritha G. Influence of subcortical auditory processing and cognitive measures on cocktail party listening in younger and older adults. Int J Audiol. 2019;58(2):87-96. http://dx.doi.org/10.1080/14992027.2018.1543962 PMid:30646763.
  12. Quaranta N, Coppola F, Casulli M, Barulli MR, Panza F, Tortelli R, et al. The prevalence of peripheral and central hearing impairment and its relation to cognition in older adults. Audiol Neurootol. 2014;19(Supl 1):10-4. http://dx.doi.org/10.1159/000371597 PMid:25733360.
  13. Cooper JC Jr, Gates GA. Hearing in the elderly--the Framingham cohort, 1983-1985: part II. Prevalence of central auditory processing disorders. Ear Hear. 1991;12(5):304-11. http://dx.doi.org/10.1097/00003446-199110000-00002 PMid:1783233.
  14. Bellis TJ, Bellis JD. Central auditory processing disorders in children and adults. Handb Clin Neurol. 2015;129:537-56. http://dx.doi.org/10.1016/B978-0-444-62630-1.00030-5 PMid:25726289.
  15. Costa SS, Cruz OL, Oliveira JA. Otorrinolaringologia. Porto Alegre: Artes Médicas; 1997.
  16. Bellis TJ, Jorgensen LE. Aging of the auditory system and differential diagnosis of central auditory processing disorder in older listeners. In: Musiek FE, Chermak GD, editores. Handbook of central auditory processing disorder: auditory neuroscience and diagnosis. San Diego: Plural Publishing; 2014. p. 499-532.
  17. Konigsmark BW, Murphy EA. Neuronal populations in the human brain. Nature. 1970;228(5278):1335-6. http://dx.doi.org/10.1038/2281335a0 PMid:5488113.
  18. Bellis TJ, Wilber LA. Effects of aging and gender on interhemispheric function. J Speech Lang Hear Res. 2001;44(2):246-63. http://dx.doi.org/10.1044/1092-4388(2001/021) PMid:11324649.
  19. Pinaud R, Tremere LA. Control of central auditory processing by a brain-generated oestrogen. Nat Rev Neurosci. 2012;13(8):521-7. http://dx.doi.org/10.1038/nrn3291 PMid:22805907.
  20. Trott S, Cline T, Weihing J, Beshear D, Bush M, Shinn J. Hormones and hearing: central auditory processing in women. J Am Acad Audiol. 2019;30(6):493-501. http://dx.doi.org/10.3766/jaaa.17123 PMid:30461407.
  21. Caspary DM, Raza A, Armour BAL, Pippin J, Arnerić SP. Immunocytochemical and neurochemical evidence for age-related loss of GABA in the inferior colliculus: implications for neural presbycusis. J Neurosci. 1990;10(7):2363-72. http://dx.doi.org/10.1523/JNEUROSCI.10-07-02363.1990 PMid:1973948.
  22. Dobri SGJ, Ross B. Total GABA level in human auditory cortex is associated with speech-in-noise understanding in older age. Neuroimage. 2021;225:117474. http://dx.doi.org/10.1016/j.neuroimage.2020.117474 PMid:33099004.
  23. Ibraheem OA, Hassaan MR. Psychoacoustic characteristics of tinnitus versus temporal resolution in subjects with normal hearing sensitivity. Int Arch Otorhinolaryngol. 2017;21(2):144-50. http://dx.doi.org/10.1055/s-0036-1583526 PMid:28382121.
  24. Mishra R, Sanju HK, Kumar P. Auditory temporal resolution in individuals with diabetes mellitus type 2. Int Arch Otorhinolaryngol. 2016;20(4):327-30. http://dx.doi.org/10.1055/s-0035-1571207 PMid:27746835.
  25. Habibi M, Farahani S, Rouhbakhsh N, Abdollahi FZ, Jalaie S. Dichotic listening processing in patients with multiple sclerosis. Aud Vestib Res. 2019;28(4):221-7. http://dx.doi.org/10.18502/avr.v28i4.1457
  26. Lewis MS, Wilmington D, Hutter M, Mcmillan GP, Casiana L, Fitzpatrick M, et al. Preliminary identification of central auditory processing screening tests for individuals with multiple sclerosis. Semin Hear. 2012;33(3):261-73. http://dx.doi.org/10.1055/s-0032-1315725
  27. Arcuri CF, Schiefer AM, Azevedo MF. Research about suppression effect and auditory processing in individuals who stutter. CoDAS. 2017;29(3):e20160230. PMid:28538833.
  28. Iliadou VV, Bamiou DE, Chermak GD, Nimatoudis I. Comparison of two tests of auditory temporal resolution in children with central auditory processing disorder, adults with psychosis, and adult professional musicians. Int J Audiol. 2014;53(8):507-13. http://dx.doi.org/10.3109/14992027.2014.900576 PMid:24801531.
  29. Prestes R, Andrade AN, Santos RB, Marangoni AT, Schiefer AM, Gil D. Temporal processing and long-latency auditory evoked potential in stutterers. Braz J Otorhinolaryngol. 2017;83(2):142-6. http://dx.doi.org/10.1016/j.bjorl.2016.02.015 PMid:27233690.
  30. Turcatto LG, Scharlach RC, Braga J Jr, Pinheiro MMC. Time-compressed speech test in adults with and without central auditory processing disorders. Rev CEFAC. 2020;22(4):e2520. http://dx.doi.org/10.1590/1982-0216/20202242520
  31. Yeend I, Beach EF, Sharma M, Dillon H. The effects of noise exposure and musical training on suprathreshold auditory processing and speech perception in noise. Hear Res. 2017;353:224-36. http://dx.doi.org/10.1016/j.heares.2017.07.006 PMid:28780178.
  32. Fostick L, Eshcoly R, Shtibelman H, Nehemia R, Levi H. Efficacy of temporal processing training to improve phonological awareness among dyslexic and normal reading students. J Exp Psychol Hum Percept Perform. 2014;40(5):1799-807. http://dx.doi.org/10.1037/a0037527 PMid:25089573.
  33. Silva BCS, Mantello EB, Freitas MCF, Foss MC, Isaac ML, Anastasio ART. Speech perception performance of subjects with type I diabetes mellitus in noise. Braz J Otorhinolaryngol. 2017;83(5):574-9. http://dx.doi.org/10.1016/j.bjorl.2016.07.003 PMid:27546348.
  34. Hoover EC, Souza PE, Gallun FJ. Auditory and cognitive factors associated with speech-in-noise complaints following mild traumatic brain injury. J Am Acad Audiol. 2017;28(4):325-39. http://dx.doi.org/10.3766/jaaa.16051 PMid:28418327.
  35. Sininger YS, Bhatara A. Laterality of basic auditory perception. Laterality. 2012;17(2):129-49. http://dx.doi.org/10.1080/1357650X.2010.541464 PMid:22385138.
  36. Cameron S, Glyde H, Dillon H. Listening in Spatialized Noise-Sentences Test (LiSN-S): normative and retest reliability data for adolescents and adults up to 60 years of age. J Am Acad Audiol. 2011;22(10):697-709. http://dx.doi.org/10.3766/jaaa.22.10.7 PMid:22212768.
  37. O’Beirne GA, McGaffin AJ, Rickard NA. Development of an adaptive low-pass filtered speech test for the identification of auditory processing disorders. Int J Pediatr Otorhinolaryngol. 2012;76(6):777-82. http://dx.doi.org/10.1016/j.ijporl.2012.02.039 PMid:22402015.
  38. Goossens T, Vercammen C, Wouters J, van Wieringen A. Masked speech perception across the adult lifespan: impact of age and hearing impairment. Hear Res. 2017;344:109-24. http://dx.doi.org/10.1016/j.heares.2016.11.004 PMid:27845259.
  39. Kumar P, Pradhan B, Handa D, Sanju HK. Effect of age on time-compressed speech perception and speech perception in noise in normal-hearing individuals. J Hear Sci. 2016;6(1):33-9. http://dx.doi.org/10.17430/896978
  40. Füllgrabe C. Age-dependent changes in temporal-fine-structure processing in the absence of peripheral hearing loss. Am J Audiol. 2013;22(2):313-5. http://dx.doi.org/10.1044/1059-0889(2013/12-0070) PMid:23975124.
  41. Murphy CFB, Rabelo CM, Silagi ML, Mansur LL, Bamiou DE, Schochat E. Auditory processing performance of the middle-aged and elderly: auditory or cognitive decline? J Am Acad Audiol. 2018;29(1):5-14. http://dx.doi.org/10.3766/jaaa.15098 PMid:29309019.
  42. Konrad-Martin D, Dille MF, McMillan G, Griest S, McDermott D, Fausti SA, et al. Age-related changes in the auditory brainstem response. J Am Acad Audiol. 2012;23(1):18-35. http://dx.doi.org/10.3766/jaaa.23.1.3 PMid:22284838.
  43. Jerger J, Hall J. Effects of age and sex on auditory brainstem response. Arch Otolaryngol. 1980;106(7):387-91. http://dx.doi.org/10.1001/archotol.1980.00790310011003 PMid:7387524.
  44. Rishiq D, Harkrider A, Springer C, Hedrick M. Effects of aging on the subcortical encoding of stop consonants. Am J Audiol. 2020;29(3):391-403. http://dx.doi.org/10.1044/2020_AJA-19-00044 PMid:32693610.
  45. Amenedo E, Díaz F. Effects of aging on middle-latency auditory evoked potentials: a cross-sectional study. Biol Psychiatry. 1998;43(3):210-9. http://dx.doi.org/10.1016/S0006-3223(97)00255-2 PMid:9494703.
  46. Poulsen C, Picton TW, Paus T. Age-related changes in transient and oscillatory brain responses to auditory stimulation in healthy adults 19-45 years old. Cereb Cortex. 2007;17(6):1454-67. http://dx.doi.org/10.1093/cercor/bhl056 PMid:16916887.
  47. van Dinteren R, Arns M, Jongsma ML, Kessels RP. Combined frontal and parietal P300 amplitudes indicate compensated cognitive processing across the lifespan. Front Aging Neurosci. 2014;6:294. http://dx.doi.org/10.3389/fnagi.2014.00294 PMid:25386141.
  48. Aghamolaei M, Jafari Z, Grimm S, Zarnowiec K, Najafi-Koopaie M, Escera C. The effects of aging on early stages of the auditory deviance detection system. Clin Neurophysiol. 2018;129(11):2252-8. http://dx.doi.org/10.1016/j.clinph.2018.08.006 PMid:30216909.
  49. Frtusova JB, Winneke AH, Phillips NA. ERP evidence that auditory-visual speech facilitates working memory in younger and older adults. Psychol Aging. 2013;28(2):481-94. http://dx.doi.org/10.1037/a0031243 PMid:23421321.
  50. Westerhausen R, Bless JJ, Passow S, Kompus K, Hugdahl K. Cognitive control of speech perception across the lifespan: a large-scale cross-sectional dichotic listening study. Dev Psychol. 2015;51(6):806-15. http://dx.doi.org/10.1037/dev0000014 PMid:25822896.
  51. Neijenhuis K, Snik A, van den Broek P, Neijenhuis K. Auditory processing disorders in adults and children: evaluation of a test battery. Int J Audiol. 2003;42(7):391-400. http://dx.doi.org/10.3109/14992020309080048 PMid:14582635.
  52. ASHA: American Speech and Hearing Association [Internet]. (Central) auditory processing disorders: working group on auditory processing disorders. Rockville: American Speech and Hearing Association; 2005 [citado em 2005]. Disponível em: https://www.asha.org/practice-portal/clinical-topics/central-auditory-processing-disorder/
  53. Keith WJ, Purdy SC, Baily MR, Kay FM [Internet]. New Zealand guidelines on auditory processing disorder. Auckland: New Zealand Audiological Society; 2019 [citado em 2022 Maio 12]. Disponível em: https://audiology.org.nz/assets/Uploads/APD/NZ-APD-GUIDELINES-2019.pdf
  54. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372(71):n71. http://dx.doi.org/10.1136/bmj.n71 PMid:33782057.
  55. Wells GA, Shea B, O’Connell D, Peterson J, Welch V, Losos M, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomized studies in meta-analyses. Ottawa: Ottawa Hospital Research Institute; 2021.
  56. National Heart, Lung, and Blood Institute [Internet]. Study quality assessment tools. Bethesda: National Heart, Lung, and Blood Institute; 2021 [citado em 2021 Jul]. Disponível em: https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools
  57. Liberalesso PB, D’Andrea KF, Cordeiro ML, Zeigelboim BS, Marques JM, Jurkiewicz AL. Effects of sleep deprivation on central auditory processing. BMC Neurosci. 2012;13(1):83. http://dx.doi.org/10.1186/1471-2202-13-83 PMid:22823997.
  58. Saunders GH, Frederick MT, Arnold M, Silverman S, Chisolm TH, Myers P. Auditory difficulties in blast-exposed veterans with clinically normal hearing. J Rehabil Res Dev. 2015;52(3):343-60. http://dx.doi.org/10.1682/JRRD.2014.11.0275 PMid:26237266.
  59. Przewoźny T, Gójska-Grymajło A, Kwarciany M, Graff B, Szmuda T, Gąsecki D, et al. Hypertension is associated with dysfunction of both peripheral and central auditory system. J Hypertens. 2016;34(4):736-44. http://dx.doi.org/10.1097/HJH.0000000000000803 PMid:26682779.
  60. Santiago JM, Luiz CBL, Garcia M, Gil D. Masking level difference and electrophysiological evaluation in adults with normal hearing. Int Arch Otorhinolaryngol. 2020;24(4):e399-406. http://dx.doi.org/10.1055/s-0040-1701266 PMid:33101502.
  61. Roup CM, Post E, Lewis J. Mild-gain hearing aids as a treatment for adults with self-reported hearing difficulties. J Am Acad Audiol. 2018;29(6):477-94. http://dx.doi.org/10.3766/jaaa.16111 PMid:29863462.
  62. Gallun F, Lewis MS, Folmer RL, Hutter M, Papesh MA, Belding H, et al. Chronic effects of exposure to high-intensity blasts: results on tests of central auditory processing. J Rehabil Res Dev. 2016;53(6):705-20. http://dx.doi.org/10.1682/JRRD.2014.12.0313
  63. Sanguebuche TR, Peixe BP, Garcia MV. Behavioral tests in adults: reference values and comparison between groups presenting or not central auditory processing disorder. Rev CEFAC. 2020;22(1):e13718. http://dx.doi.org/10.1590/1982-0216/202022113718
  64. Pham CQ, Kapolowicz MR, Metherate R, Zeng FG. Nicotine enhances auditory processing in healthy and normal-hearing young adult nonsmokers. Psychopharmacology. 2020;237(3):833-40. http://dx.doi.org/10.1007/s00213-019-05421-x PMid:31832719.
  65. Nunes CL, Desgualdo L, Carvalho GS. Construction and validation of speech tests with noise (SN) and dichotic with digits (DD) for application in Portuguese children? Rev Port Otorrinolaringol Cir Cérvico-Facial. 2011;49(4):222-7.
  66. Pomponio ME, Nagle S, Smart JL, Palmer S. The effect of varying test administration and scoring procedures on three tests of (central) auditory processing disorder. J Am Acad Audiol. 2019;30(8):694-702. http://dx.doi.org/10.3766/jaaa.17063 PMid:31429399.
     
65a84576a95395441730de34 codas Articles

CoDAS

Share this page
Page Sections