CoDAS
https://codas.org.br/article/doi/10.1590/2317-1782/20232021304en
CoDAS
Artigo Original

Oropharyngeal geometry and acoustic parameters of voice in healthy and Parkinson's disease subjects

Geometria orofaríngea e parâmetros acústicos vocais de indivíduos hígidos e com doença de Parkinson

Joice Maely Souza da Silva; Adriana de Oliveira Camargo Gomes; Maria das Graças Wanderley de Sales Coriolano; Julianne Pitanga Teixeira; Hellen Vasconcelos Silva Leal de Lima; Clarissa Evelyn Bandeira Paulino; Hilton Justino da Silva; Zulina Souza de Lira

Downloads: 0
Views: 268

Abstract

Purpose

to verify whether there are differences in acoustic measures and oropharyngeal geometry between healthy individuals and people with Parkinson's disease, according to age and sex, and to investigate whether there are correlations between oropharyngeal geometry measures in this population.

Methods

40 individuals participated, 20 with a diagnosis of Parkinson's disease and 20 healthy individuals, matched by age, sex, and body mass index. Acoustic variables included fundamental frequency, jitter, shimmer, glottal-to-noise excitation ratio, noise, and mean intensity. Oropharyngeal geometry variables were measured with acoustic pharyngometry.

Results

geometry variables were smaller in the group with Parkinson's disease, and older adults with Parkinson's disease had a smaller oropharyngeal junction area than healthy older adults. Regarding acoustic parameters of voice, fundamental frequency values were lower in males with Parkinson's disease, and jitter values ​​were higher in the non-elderly subjects with Parkinson's disease. There was a moderate positive correlation between oral cavity length and volume, pharyngeal cavity length and vocal tract length, and pharyngeal cavity volume and vocal tract volume.

Conclusion

individuals with Parkinson's disease had smaller glottal areas and oropharyngeal junction areas than healthy individuals. When distributed into sex and age groups, the fundamental frequency was lower in males with Parkinson's disease. There was a moderate positive correlation between oropharyngeal length and volume measures in the study sample.

Keywords

Oropharynx; Voice Quality; Acoustics; Dysphonia; Parkinson Disease

Resumo

Objetivo

verificar se existem diferenças nas medidas acústicas e da geometria orofaríngea entre indivíduos hígidos e pessoas com Doença de Parkinson, segundo a idade e sexo e investigar se há correlações entre as medidas geométricas orofaríngeas nessa população.

Método

participaram 40 indivíduos, sendo 20 com diagnóstico de Doença de Parkinson e 20 indivíduos hígidos, pareados por faixa etária, sexo e índice de massa corporal. As variáveis acústicas estudadas foram frequência fundamental, jittershimmer, glottal-to-noise excitation ratio, ruído e média da intensidade. As variáveis geométricas da orofaringe foram aferidas por faringometria acústica.

Resultados

as variáveis geométricas foram menores no grupo com Doença de Parkinson e os idosos com Doença de Parkinson apresentaram menor área da junção orofaríngea que os idosos hígidos. Com relação aos parâmetros acústicos vocais, o valor da frequência fundamental foi menor no sexo masculino, no grupo com Doença de Parkinson e os valores de jitter foram maiores no grupo não idoso dos sujeitos com Doença de Parkinson. Houve correlação positiva moderada entre o comprimento e volume da cavidade oral, comprimento da cavidade faríngea e o comprimento do trato vocal e do volume da cavidade faríngea e o volume do trato vocal.

Conclusão

indivíduos com Doença de Parkinson apresentaram menores valores de área glótica e área da junção orofaríngea, comparativamente aos hígidos. Quando distribuídos por faixa etária e sexo, a frequência fundamental foi menor no grupo com doença de Parkinson, na população masculina. Houve correlação positiva moderada entre as medidas de comprimento e volume da orofaringe, na amostra estudada.

Palavras-chave

Orofaringe; Qualidade da Voz; Acústica; Disfonia; Doença de Parkinson

Referências

  1. Marques NGS, Oliveira MIS, Alves MN, Leão SS, Souza SDB, Lopes GS. Parkinson’s disease: the main damages caused in the individual. Res Soc Dev. 2020;9(10):e37491110023. http://dx.doi.org/10.33448/rsd-v9i11.10023
  2. Rodríguez-Violante M, Zerón-Martínez R, Cervantes-Arriaga A, Corona T. Who can diagnose Parkinson’s disease first? Role of pre-motor symptoms. Arch Med Res. 2017;48(3):221-7. http://dx.doi.org/10.1016/j.arcmed.2017.08.005 PMid:28882322.
  3. Cabreira V, Massano J. Parkinson’s disease: clinical review and update. Acta Med Port. 2019;32(10):661-70. http://dx.doi.org/10.20344/amp.11978 PMid:31625879.
  4. Mu J, Chaudhuri KR, Bielza C, Pedro-Cuesta J, Larrañaga P, Martinez-Martin P. Parkinson’s disease subtypes identified from cluster analysis of motor and non-motor symptoms. Front Aging Neurosci. 2017;9:301. http://dx.doi.org/10.3389/fnagi.2017.00301 PMid:28979203.
  5. Berenguer MP, Briones HAY. Trastornos del habla en la enfermedad de Parkinson. Rev Cient Cienc Med. 2019;22(1):36-42.
  6. Barbosa PA, Madureira S. Manual de fonética acústica experimental. São Paulo: Cortez Editora; 2015. 591 p.
  7. Gomes MLC, Carneiro DO, Dresch AAG. Perceptive and acoustic analysis in forensic phonetics: research in voice disguise. Domínios Ling. 2016;10(2):559-89. http://dx.doi.org/10.14393/DL22-v10n2a2016-7
  8. Xu H, Bao Z, Liang D, Li M, Wei M, Ge X, et al. Speech and language therapy for voice problems in Parkinson’s disease: a meta-analysis. J Neuropsychiatry Clin Neurosci. 2020;32(4):344-51. http://dx.doi.org/10.1176/appi.neuropsych.19020044 PMid:32374650.
  9. Silva JMS, Gomes AOC, Silva HJ, Vasconcelos SJ, Coriolano MGWS, Lira ZS. Effect of resonance tube technique on oropharyngeal geometry and voice in individuals with Parkinson’s disease. J Voice. 2021;35(5):807.E25-32. http://dx.doi.org/10.1016/j.jvoice.2020.01.025 PMid:32201236.
  10. Oliveira KGSC, Lira ZS, Silva HJ, Lucena JA, Gomes AOC. Oropharyngeal geometry and the singing voice: immediate effect of two semi-occluded vocal tract exercises. J Voice. 2022;36(4):523-30. http://dx.doi.org/10.1016/j.jvoice.2020.06.027 PMid:32712077.
  11. Yamasaki R, Murano EZ, Gebrim E, Hachiya A, Montagnoli A, Behlau M, et al. Vocal tract adjustments of dysphonic and non-dysphonic women pre and post-flexible resonance tube in water exercise: a quantitative MRI study. J Voice. 2017;31(4):442-54. http://dx.doi.org/10.1016/j.jvoice.2016.10.015 PMid:28017460.
  12. Boutet C, Moussa SAM, Celle S, Laurent B, Barthélémy JC, Barral FG, et al. Supra-epiglottic upper airway volume in elderly patients with obstructive sleep apnea hypopnea syndrome. PLoS One. 2016;11(6):e0157720. http://dx.doi.org/10.1371/journal.pone.0157720 PMid:27336305.
  13. Gelardi M, del Giudice AM, Cariti F, Cassano M, Farras AC, Fiorella ML, et al. Acoustic pharyngometry: clinical and instrumental correlations in sleep disorders. Braz J Otorhinolaryngol. 2007;73(2):257-65. http://dx.doi.org/10.1016/S1808-8694(15)31075-2 PMid:17589736.
  14. Xue SA, Hao JG. Normative standards for vocal tract dimensions by race as measured by acoustic pharyngometry. J Voice. 2005;20(3):391-400. http://dx.doi.org/10.1016/j.jvoice.2005.05.001 PMid:16243483.
  15. Ibrahim K. Normal standard curve for acoustic pharyngometry. Otolaryngol Head Neck Surg. 2001;124(3):323-30. http://dx.doi.org/10.1067/mhn.2001.113136 PMid:11241000.
  16. Zhao Y, Li X, Ma J. Combined application of pharyngeal volume and minimal cross-sectional area may be helpful in screening persons suspected of obstructive sleep apnea (OSA). Sleep Breath. 2022;26(1):243-50. http://dx.doi.org/10.1007/s11325-021-02358-4 PMid:33966156.
  17. Opsahl UL, Berge M, Lehmann S, Bjorvatn B, Opsahl P, Johansson A. Acoustic pharyngometry - a new method to facilitate oral appliance therapy. J Oral Rehabil. 2021;48(5):601-13. http://dx.doi.org/10.1111/joor.13134 PMid:33314265.
  18. Carrillo L, Ortiz KZ. Análise vocal (auditiva e acústica) nas disartrias. Pró-Fono. 2007;19(4):381-6. http://dx.doi.org/10.1590/S0104-56872007000400010
  19. Englert M, Lima L, Behlau M. Acoustic voice quality index and acoustic breathiness index: analysis with different speech material in the Brazilian Portuguese. J Voice. 2020;34(5):810.E11-7. http://dx.doi.org/10.1016/j.jvoice.2019.03.015 PMid:31005448.
  20. Pereira MT, Oliveira DMS, Dias ACAM, Moraes AMF, Dias GAS, Oliveira EM. Correlação entre o equilíbrio funcional e o estadiamento da Doença de Parkinson. Para Res Med J. 2017;1(3):1-8. http://dx.doi.org/10.4322/prmj.2017.030
  21. Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189-98. http://dx.doi.org/10.1016/0022-3956(75)90026-6 PMid:1202204.
  22. Rauen MS, Moreira EAM, Calvo MCM, Lobo AS. Nutritional status assessment of institutionalized elderly. Rev Nutr. 2008;21(3):303-10. http://dx.doi.org/10.1590/S1415-52732008000300005
  23. Hinkle DE, Wiersma W, Jurs SG. Applied statistics for the behavioral sciences. 5. ed. Boston: Houghton Mifflin; 2003.
  24. Perju-Dumbrava L, Lau K, Phyland D, Papanikolaou V, Finlay P, Beare R, et al. Arytenoid cartilage movements are hypokinetic in Parkinson’s disease: a quantitative dynamic computerised tomographic study. PLoS One. 2017;12(11):e0186611. http://dx.doi.org/10.1371/journal.pone.0186611 PMid:29099841.
  25. Ma A, Lau KK, Thyagarajan D. Radiological correlates of vocal fold bowing as markers of Parkinson’s disease progression: a cross-sectional study utilizing dynamic laryngeal CT. PLoS One. 2021;16(10):e0258786. http://dx.doi.org/10.1371/journal.pone.0258786 PMid:34653231.
  26. Dias AE, Limongi JCP, Hsing WT, Barbosa EG. Telerehabilitation in Parkinson’s disease: influence of cognitive status. Dement Neuropsychol. 2016;10(4):327-32. http://dx.doi.org/10.1590/s1980-5764-2016dn1004012 PMid:29213477.
  27. Skodda S, Grönheit W, Schlegel U. Intonation and speech rate in Parkinson’s disease: general and dynamic aspects and responsiveness to levodopa admission. J Voice. 2011;25(4):e199-205. http://dx.doi.org/10.1016/j.jvoice.2010.04.007 PMid:21051196.
  28. Behlau M, Madazio G, Azevedo R, Brasil O, Vilanova LC. Disfonias neurológicas. In: Belhlau M, editor. Voz: o livro do especialista II. Rio de Janeiro: Revinter; 2005. p. 111-62.
  29. Monahan K, Kirchner HL, Redline S. Oropharyngeal Dimensions in Adults: Effect of Ethnicity, Gender, and Sleep Apnea. J Clin Sleep Med. 2005;1(3):257-63. http://dx.doi.org/10.5664/jcsm.26340 PMid:17566185.
  30. Teixeira DSDC, Frazão P, Alencar GP, Baquero OS, Narvai PC, Lebrão ML, et al. Estudo prospectivo da perda dentária em uma coorte de idosos dentados. Cad Saúde Pública. 2016;32(8):e00017215. http://dx.doi.org/10.1590/0102-311X00017215 PMid:27509546.
     
64630280a953955aee396fb2 codas Articles

CoDAS

Share this page
Page Sections