CoDAS
https://codas.org.br/article/doi/10.1590/2317-1782/20232021022
CoDAS
Original Article

Study of auditory pathways in type 1 diabetes mellitus through brainstem auditory evoked potentials and contralateral acoustic reflex

Luciene da Cruz Fernandes; Caio Leônidas Oliveira de Andrade; Luis Fernando Fernandes Adan; Ana Marice Teixeira Ladeia

Downloads: 0
Views: 491

Abstract

Purpose

To investigate the functionalities of the neural pathways through the auditory evoked potentials of the brainstem and the contralateral stapedial acoustic reflexes in normal-hearing individuals with type 1 diabetes mellitus, in order to detect possible alterations in the central auditory pathways.

Methods

This is a cross-sectional study with a comparison group and a convenience sample, consisting of 32 individuals with type 1 diabetes mellitus and 20 controls without the disease. All subjects had hearing thresholds within normal limits and type A tympanometric curves. The acoustic reflex arc and brainstem auditory potentials were investigated. Statistical analyses were performed using the SPSS 17.0. The Chi-square test, Student´s t-test, and Multiple linear regression were used.

Results

The auditory thresholds of the acoustic reflex were statistically lower in the group with the disease at frequencies of 0.5 kHz and 1.0 kHz in the left ear (p=0.01 and p=0.01, respectively). The absolute latencies III and V of the auditory potentials of the brainstem in the right ear and V in the left ear were increased in subjects with type 1 diabetes mellitus (p=0.03, p=0.02 and p=0.03, respectively).

Conclusion

The findings suggest that subjects with type 1 diabetes mellitus are more likely to present alterations in the central auditory pathways, even with auditory thresholds within normal limits.

Keywords

Diabetes Mellitus Type 1; Glucose Metabolism Disorders; Reflex Acoustic; Evoked; Potentials, Auditory, Brain Stem; Hearing

Referencias

Van den Driessche A, Eenkhoorn V, Van Gaal L, De Block C. Type 1 diabetes and autoimmune polyglandular syndrome: a clinical review. Neth J Med. 2009;67(11):376-87. PMid:20009114.

American Diabetes Association. Classification and diagnosis of diabetes: standards of medical care in diabetes-2020. Diabetes Care. 2020;43(Suppl 1):S14-31. http://dx.doi.org/10.2337/dc20-S002 PMid:31862745.

Mujica-Mota MA, Patel N, Saliba I. Hearing loss in type 1 diabetes: are we facing another microvascular disease? A meta-analysis. Int J Pediatr Otorhinolaryngol. 2018;113:38-45. http://dx.doi.org/10.1016/j.ijporl.2018.07.005 PMid:30174007.

Bainbridge KE, Hoffman HJ, Cowie C. Diabetes and hearing impairment in the united states: audiometric evidence from the national health and nutrition examination survey, 1999 to 2004. Ann Intern Med. 2008;149(1):1-10. http://dx.doi.org/10.7326/0003-4819-149-1-200807010-00231 PMid:18559825.

Kariya S, Cureoglu S, Fukushima H, Morita N, Baylan MY, Maeda Y, et al. Comparing the cochlear spiral modiolar artery in type-1 and type-2 diabetes mellitus: a human temporal bone study. Acta Med Okayama. 2010;64(6):375-83. PMid:21173807.

Lisowska G, Namysłowski G, Morawski K, Strojek K. Early identification of hearing impairment in patients with type 1 diabetes mellitus. Otol Neurotol. 2001;22(3):316-20. http://dx.doi.org/10.1097/00129492-200105000-00008 PMid:11347633.

Park MS, Park SW, Choi JH. Distortion product otoacoustic emissions in diabetics with normal hearing. Scand Audiol Suppl. 2001;30(1):148-51. http://dx.doi.org/10.1080/010503901300007362 PMid:11318450.

Ugur AK, Kemaloglu YK, Ugur MB, Gunduz B, Saridogan C, Yesilkaya E, et al. Otoacoustic emissions and effects of contralateral white noise stimulation on transient evoked otoacoustic emissions in diabetic children. Int J Pediatr Otorhinolaryngol. 2009;73(4):555-9. http://dx.doi.org/10.1016/j.ijporl.2008.12.002 PMid:19150138.

Radwan HM, El-Gharib AM, Erfan AA, Emara AA. Auditory brain stem response and cortical evoked potentials in children with type 1 diabetes mellitus. Acta Otolaryngol. 2017;137(5):511-5. http://dx.doi.org/10.1080/00016489.2016.1252059 PMid:27834105.

Dąbrowski M, Mielnik-Niedzielska G, Nowakowski A. Involvement of the auditory organ in type 1 diabetes mellitus. Endokrynol Pol. 2011;62(2):138-44. PMid:21528476.

Jerger J. Clinical experience with impedance audiometry. Arch Otolaryngol. 1970;92(4):311-24. http://dx.doi.org/10.1001/archotol.1970.04310040005002 PMid:5455571.

Jerger S, Jerger J. Alterações auditivas: um manual para avaliação clínica. São Paulo: Atheneu; 1989

Gelfand SA. The contralateral acoustic reflex threshold. In: Silman S, editor. The acoustic reflex: basic principles and clinical aplications. Orlando: Academic Press; 1984. p. 137-86. http://dx.doi.org/10.1016/B978-0-12-643450-7.50010-X

Hood L. Clinical applications of the auditory brainstem response. San Diego: Singular; 1998.

Koide Y, Tajima S, Yoshida M, Konno M. Biochemical changes in the inner ear induced by insulin, in relation to the cochlear microphonics. Ann Otol Rhinol Laryngol. 1960;69(4):1083-97. http://dx.doi.org/10.1177/000348946006900415 PMid:13757622.

Makishima K, Tanaka AK. Pathological changes of the inner ear and central auditory pathway in diabetics. Ann Otol Rhinol Laryngol. 1971;80(2):218-28. http://dx.doi.org/10.1177/000348947108000208 PMid:5550775.

Fukuda Y. Glicemia, insulinemia e patologia da orelha interna [dissertation]. São Paulo: Universidade Federal de São Paulo, Escola Paulista de Medicina; 1982. 69 p.

Fernandes LC, Casais-Silva L, Ladeia AM. Dysfunction of the peripheral and central auditory pathway in patients with type 1 diabetes mellitus. J Diabetes Mellitus. 2012;2(1):76-81. http://dx.doi.org/10.4236/jdm.2012.21012

Celik O, Yalçin S, Celebi H, Oztürk A. Hearing loss in insulin-dependent diabetes mellitus. Auris Nasus Larynx. 1996;23(1):127-32. http://dx.doi.org/10.1016/S0385-8146(96)80019-8 PMid:8809334.

Al-Sofiani M, MacLeod S, Ghanim H, Stecker N, Hall J, Lippes H. Type 1 diabetes and hearing loss: audiometric assessment and measurement of circulating levels of soluble receptor for advanced glycation end products. Diabetes Metab Res Rev. 2020;36(6):e3312. http://dx.doi.org/10.1002/dmrr.3312 PMid:32191386.

Virtaniemi J, Laakso M, Nuutinen J, Karjalainen S, Vartiainen E. Acoustic-reflex responses in patients with insulin-dependent diabetes mellitus. Am J Otolaryngol. 1994;15(2):109-13. http://dx.doi.org/10.1016/0196-0709(94)90059-0 PMid:8179101.

Braite N, Fernandes LC, Rissatto-Lago MR, Alves CAD. Effects of type 1 diabetes mellitus on efferent auditory system in children and adolescents. Int J Pediatr Otorhinolaryngol. 2019;127:109660. http://dx.doi.org/10.1016/j.ijporl.2019.109660 PMid:31487561.

Bittar RSM, Sanchez TG, Santoro PP, Medeiros IRT. O metabolismo da glicose e o ouvido interno. Int Arch Otorhinolaryngol. 1998;2(1):4-8.

Jacobs PG, Konrad-Martin D, Mcmillan GP, McDermott D, Fausti SA, Kagen D, et al. Influence of acute hyperglycemia on otoacoustic emissions and medial olivocochlear reflex. J Acoust Soc Am. 2012;131(2):1296-306. http://dx.doi.org/10.1121/1.3676609 PMid:22352503.

Lasagni A, Giordano P, Lacilla M, Raviolo A, Trento M, Camussi E, et al. Cochlear, auditory brainstem responses in Type 1 diabetes: relationship with metabolic variables and diabetic complications. Diabet Med. 2016;33(9):1260-7. http://dx.doi.org/10.1111/dme.13039 PMid:26605750.

Acar M, Aycan Z, Acar B, Ertan U, Peltek HN, Karasen RM. Audiological evalution in pediatric patients with type 1 diabetes mellitus. J Pediatr Endocrinol Metab. 2012;25(5-6):503-8. http://dx.doi.org/10.1515/jpem-2012-0062 PMid:22876546.

Wu HP, Guo YL, Cheng TJ, Hsu CJ. Chronological changes in compromised olivocochlear activity and the effect of insulin in diabetic wistar rats. Hear Res. 2010;270(1-2):173-8. http://dx.doi.org/10.1016/j.heares.2010.07.008 PMid:20678565.
 

6466f2cca953957490239383 codas Articles

CoDAS

Share this page
Page Sections