CoDAS
https://codas.org.br/article/doi/10.1590/2317-1782/20212021157en
CoDAS
Original Article

Immediate effect of different exercises in the vocal space of women with and without vocal nodules

Efeito imediato de diferentes exercícios no espaço vocálico de mulheres com e sem nódulos vocais

Fernanda Pereira França; Anna Alice Almeida; Leonardo Wanderley Lopes

Downloads: 1
Views: 758

Abstract

Purpose

To investigate the immediate effect of voiced tongue vibration (VSL), high-resistance straw in the air (CAR), and overarticulation (OA) on the vocal space of vocally healthy women (MVS) and with vocal nodules (MNV).

Methods

12 women participated in the MNV and 12 women in the MVS, allocated to perform the vocal exercises of VSL, CAR, and OA. Each participant performed only one of the three proposed exercises, for 5 minutes, preceded and followed by recording a sequence of vehicle sentences for extracting formants (F1 and F2) from the vowel segments [a, i, u]. The vowel space was analyzed through the differences between the measures of the formants of the vowels.

Results

we observed a reduction of F1 in the interval [a]-[i] and [i]-[u] and of F2 between the vowels [a]-[u] and [i]-[u] in the MVS, after performing the CAR. In MNV, we observed a reduction of F2 in the interval [a]-[i] after VSL. In the intergroup analysis, there were higher F1 values between the intervals of the vowels [a]-[i] and [i]-[u] in the MVS, before performing the CAR, and after exercise only in the interval [a]-[i]. A higher value of F1 and F2 was observed in the interval between the vowels [i]-[u] in the MNV after VSL.

Conclusion

The VSL exercise reduced the vowel space in MNV women. CAR reduced the vocal space of women in the MVS. The MNV had a smaller vowel space compared to the MVS before and after the CAR. We observed a reduction in the vowel space in the MNV compared to the MNV after the VSL exercise.

Keywords

Voice; Voice Disorders; Acoustic; Laryngeal Diseases; Voice Training

Resumo

Objetivo

Investigar o efeito imediato da vibração sonorizada de língua (VSL), do canudo de alta resistência no ar (CAR) e da sobrearticulação (SA) sobre o espaço vocálico de mulheres vocalmente saudáveis (MVS) e com nódulos vocais (MNV).

Método

Participaram 12 mulheres no MNV e 12 mulheres no MVS, alocadas para execução dos exercícios vocais de VSL, CAR e AS. Cada participante realizou apenas um dos três exercícios propostos, durante 5 minutos, antecedidos e sucedidos pela gravação de uma sequência de frases-veículo para extração dos formantes (F1 e F2) dos segmentos vocálicos [a, i, u]. O espaço vocálico foi analisado por meio das diferenças entre as medidas dos formantes das vogais.

Resultados

houve redução de F1 no intervalo [a]-[i] e [i]-[u] e de F2 entre as vogais [a]-[u] e [i]-[u] no MVS, após realização do CAR. No MNV, observou-se redução de F2 no intervalo [a]-[i] após VSL. Na análise intergrupo, houve maiores valores de F1 entre os intervalos das vogais [a]-[i] e [i]-[u] no MVS, antes da realização do CAR, e após exercício apenas no intervalo [a]-[i]. Observou-se maior valor de F1 e F2 no intervalo entre as vogais [i]-[u] no MNV após VSL.

Conclusão

O exercício de VSL diminuiu o espaço vocálico em mulheres do MNV. O CAR reduziu o espaço vocálico de mulheres do MVS. O MNV apresentou menor espaço vocálico em relação ao MVS, antes e após a realização do CAR. Houve redução do espaço vocálico no MNV em relação ao MNV após o exercício de VSL.

Palavras-chave

Voz; Distúrbios da Voz; Acústica; Doenças da laringe; Treinamento da Voz

References

  1. Ladefoged P. Vowels and consonants: an introduction to the sounds of languages. 2nd ed. Los Angeles: Blackwell Publishing; 2007.
  2. Pisanski K, Cartei V, Mcgettigan C, Raine J, Reby D. Voice modulation: a window into the origins of human vocal control? Trends Cogn Sci. 2016;20(4):304-18. http://dx.doi.org/10.1016/j.tics.2016.01.002 PMid:26857619.
  3. Barbosa PA, Madureira S. Manual de fonética acústica experimental: aplicações a dados do português. São Paulo: Cortez Editora; 2015.
  4. Park EJ, Yoo SD, Kim HS, Lee JH, Yun DH, Kim DH, et al. Correlations between swallowing function and acoustic vowel space in stroke patients with dysarthria. NeuroRehabilitation. 2019;45(4):463-9. http://dx.doi.org/10.3233/NRE-192904 PMid:31868693.
  5. Oliveira M, Pacheco V. Características fonéticas e contrastes fonológicos em dados de fala de pessoas com down: perspectiva da geometria de traços. Lingüística. 2016;32(2):75-90. http://dx.doi.org/10.5935/2079-312X.20160018
  6. Skodda S, Visser W, Schlegel L. Vowel articulation in Parkinson’s disease. J Voice. 2011;25(4):467-72. http://dx.doi.org/10.1016/j.jvoice.2010.01.009 PMid:20434876.
  7. Roy N, Leeper HA, Blomgren M, Cameron RM. A description of phonetic, acoustic, and physiological changes associated with improved intelligibility in a speaker with spastic dysarthria. Am J Speech Lang Pathol. 2001;10(3):274-90. http://dx.doi.org/10.1044/1058-0360(2001/025)
  8. Ishikawa K, Nudelman C, Park S, Ketring C. Perception and acoustic studies of vowel intelligibility in dysphonic speech. J Voice. 2021;35(4):659.e11-659.e24. http://dx.doi.org/10.1016/j.jvoice.2019.12.022
  9. Fauth C, Vaxelaire B, Rodier JF, Volkmar JF, Bouarourou F, Hirsch F, et al. A spatiotemporal prospective study of speech in patients with or without recurrent laryngeal nerve paralysis after thyroid surgery. In: International Seminar on Speech Production: La production de la parole, du cerveau au comportement; 2011; Montréal, Canada. Montréal, Canada: Hal Open Science; 2011.
  10. França FP, Almeida AA, Lopes LW. Acoustic-articulatory configuration of women with vocal nodules and with healthy voice. CoDAS. 2019;31(6):e20180241. http://dx.doi.org/10.1590/2317-1782/20192018241 PMid:31751443.
  11. Roy N, Nissen SL, Dromey C, Sapir S. Articulatory changes in muscle tension dysphonia: evidence of vowel space expansion following manual circumlaryngeal therapy. J Commun Disord. 2009;42(2):124-35. http://dx.doi.org/10.1016/j.jcomdis.2008.10.001 PMid:19054525.
  12. França FP, Evangelista DS, Lopes LW. Revisão sistemática sobre os formantes e a produção da voz e fala. Revista Prolíngua. 2017;12(1):2-16. http://dx.doi.org/10.22478/ufpb.1983-9979.2017v12n1.36627
  13. Yamasaki R, Murano EZ, Gebrim E, Hachiya A, Montagnoli A, Behlau M, et al. Vocal tract adjustments of dysphonic and non-dysphonic women pre- and post- flexible resonance tube in water exercise: a quantitative mri study. J Voice. 2017;31(4):442-54. http://dx.doi.org/10.1016/j.jvoice.2016.10.015 PMid:28017460.
  14. Maxfield L, Palaparthi A, Titze I. New evidence that nonlinear source-filter coupling affects harmonic intensity and f0 stability during instances of harmonics crossing formants. J Voice. 2017;31(2):149-56. http://dx.doi.org/10.1016/j.jvoice.2016.04.010 PMid:27501922.
  15. Stemple J, Graze L, Klaben B. Clinical voice pathology: theory and management. 3rd ed. San Diego, CA: Singular Publishing Group; 2020.
  16. Floro Silva RL, da Silva Antonetti AE, Ribeiro VV, Ramos AC, Brasolotto AG, Silverio KCA. Voiced High-frequency oscillation or lax vox technique? Immediate effects in dysphonic individuals. J Voice. 2022;36(2):290.e17-24. http://dx.doi.org/10.1016/j.jvoice.2020.05.004 PMid:32553497.
  17. Oliveira KGSC, Lira ZS, Silva HJ, Lucena JA, Gomes AOC. Oropharyngeal geometry and the singing voice: immediate effect of two semi-occluded vocal tract exercises. J Voice. 2020;S0892-1997(20)30244-7. http://dx.doi.org/10.1016/j.jvoice.2020.06.027
  18. Shadle CH, Nam H, Whalen DH. Comparing measurement errors for formants in synthetic and natural vowels. J Acoust Soc Am. 2016;139(2):713-27. http://dx.doi.org/10.1121/1.4940665 PMid:26936555.
  19. Pimenta RA, Dájer ME, Hachiya A, Tsuji DH, Montagnoli NA. Parâmetros acústicos e quimografia de alta velocidade identificam efeitos imediatos dos exercícios de vibração sonorizada e som basal. CoDAS. 2013;25(6):577-83. http://dx.doi.org/10.1590/S2317-17822014000100010 PMid:24626983.
  20. Bento FAM, Diaféria GLA, Fonoff ET, Padovani MMP, Behlau M. Efeito da técnica de sobrearticulação na voz e na fala em indivíduos com doença de Parkinson após cirurgia de estimulação cerebral profunda. Audiol Commun Res. 2019;24:e2008. http://dx.doi.org/10.1590/2317-6431-2018-2008
  21. Paes SM, Behlau M. Dosage dependent effect of high-resistance straw exercise in dysphonic and non-dysphonic women. CoDAS. 2017;29(1):e20160048. http://dx.doi.org/10.1590/2317-1782/20172016048 PMid:28300957.
  22. Titze IR. Voice training and therapy with a semi-occluded vocal tract: rationale and scientific underpinnings. J Speech Lang Hear Res. 2006;49(2):448-59. http://dx.doi.org/10.1044/1092-4388(2006/035) PMid:16671856.
  23. Van Stan JH, Roy N, Awan S, Stemple J, Hillman RE. A taxonomy of voice therapy. Am J Speech Lang Pathol. 2015;24(2):101-25. http://dx.doi.org/10.1044/2015_AJSLP-14-0030 PMid:25763678.
  24. Evitts PM, Starmer H, Teets K, Montgomery C, Calhoun L, Schulze A, et al. The impact of dysphonic voices on healthy listeners: listener reaction times, speech intelligibility, and listener comprehension. Am J Speech Lang Pathol. 2016;25(4):561-75. http://dx.doi.org/10.1044/2016_AJSLP-14-0183 PMid:27784031.
  25. Azevedo LL, Passaglio KT, Rosseti MB, Silva CB, Oliveira BFV, Costa RC. Avaliação da performance vocal antes e após a vibração sonorizada de língua. Rev Soc Bras Fonoaudiol. 2010;15(3):343-8. http://dx.doi.org/10.1590/S1516-80342010000300006
  26. Guzman M, Miranda G, Olavarria C, Madrid S, Muñoz D, Leiva M et al. Computerized tomography measures during and after artificial lengthening of the vocal tract in subjects with voice disorders. J Voice. 2017;31(1):124.e1-124.e10. http://dx.doi.org/10.1016/j.jvoice.2016.01.003
  27. Guzman M, Denizoglu I, Fridman D, Loncon C, Rivas C, García R et al. Physiologic voice rehabilitation based on water resistance therapy with connected speech in subjects with vocal fatigue. J Voice. 2021 Feb 10; S0892-1997(20):30482-3. http://dx.doi.org/10.1016/j.jvoice.2020.12.022
  28. Ferguson SH, Kewley-port D. Talker differences in clear and conversational speech: acoustic characteristics of vowels. J Speech Lang Hear Res. 2007;50(5):1241-55. http://dx.doi.org/10.1044/1092-4388(2007/087) PMid:17905909.
  29. Kiliç MA, Oğüt F, Dursun G, Okur E, Yildirim I, Midilli R. The effects of vowels on voice perturbation measures. J Voice. 2004;18(3):318-24. http://dx.doi.org/10.1016/j.jvoice.2003.09.007 PMid:15331104.
  30. Pereira EC, Silvério KCA, Marques JM, Camargo PAM. Efeito imediato de técnicas vocais em mulheres sem queixa vocal. Rev CEFAC. 2011;13(5):886-94. http://dx.doi.org/10.1590/S1516-18462011005000061
     
62ddf821a95395073c321765 codas Articles

CoDAS

Share this page
Page Sections