Frequency-Following Response (FFR) in cochlear implant users: a systematic review of acquisition parameters, analysis, and outcomes
Frequency-Following Response (FFR) em usuários de implante coclear: uma revisão sistemática dos parâmetros de aquisição, análise e resultados
Leonardo Gleygson Angelo Venâncio; Mariana de Carvalho Leal; Laís Cristine Delgado da Hora; Silvana Maria Sobral Griz; Lilian Ferreira Muniz
Abstract
Purpose: To characterize the acquisition parameters, analysis, and results of the frequency-following response (FFR) in cochlear implant users. Research strategies: The search was conducted in Cochrane Library, Latin American and Caribbean Health Sciences Literature (LILACS), Ovid Technologies, PubMed, SciELO, ScienceDirect, Scopus, Web of Science, and gray literature. Selection criteria: Studies on FFR in cochlear implant users or that compared them with normal-hearing people, with no restriction of age, were included. Secondary and experimental studies were excluded. There was no restriction of language or year of publication. Data analysis: The data were analyzed and reported according to the stages in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), 2020. The methodological quality was analyzed with the Joanna Briggs Institute Critical Appraisal Checklist for Analytical Cross-Sectional Studies. Divergences were solved by a third researcher. Results: Six studies met the inclusion criteria. Only one study was comparative, whose control group comprised normal-hearing people. The variations in acquisition parameters were common and the analysis predominantly approached the time domain. Cochlear implant users had different FFR results from those of normal-hearing people, considering the existing literature. Most articles had low methodological quality. Conclusion: There is no standardized FFR acquisition and analysis protocol for cochlear implant users. The results have a high risk of bias.
Keywords
Resumo
Objetivo: Caracterizar os parâmetros de aquisição, análise e resultados do exame Frequency Following Response (FFR) em usuários de implante coclear. Estratégia de pesquisa: As buscas foram realizadas nas bases Cochrane Library, Literatura Latino-Americana e do Caribe em Ciências da Saúde (LILACS), Ovid Technologies, PubMed, SciELO, ScienceDirect, Scopus, Web of Science e na literatura cinzenta. Critérios de seleção: Foram incluídos estudos sobre o FFR em usuários de implante coclear ou que os comparassem à indivíduos com audição normal, sem restrição de idade. Foram excluídos estudos secundários e experimentais. Não houve restrição de idioma e ano de publicação. Análise dos dados: Os dados foram analisados e redigidos de acordo com as etapas do Preferred Reporting Items for Systematic Reviews and Meta-Analyse (PRISMA) 2020. Para análise da qualidade metodológica foi utilizado o instrumento Joanna Briggs Institute Critical Appraisal Checklist for Analytical Cross Sectional Studies. As divergências foram resolvidas por um terceiro pesquisador. Resultados: Seis estudos atenderam aos critérios de inclusão. Apenas um estudo foi do tipo comparativo com grupo controle de indivíduos com audição normal. As variações nos parâmetros de aquisição foram comuns e as análises predominaram no domínio do tempo. Usuários de implante coclear apresentaram diferenças nos resultados do FFR quando comparados a indivíduos com audição normal, considerando a literatura existente. A maioria dos artigos teve baixa qualidade metodológica. Conclusão: Não existe padronização de um protocolo de aquisição e análise para o FFR em usuários de implante coclear. Os resultados são de alto risco de viés
Palavras-chave
References
1. Roche JP, Hansen MR. On the Horizon: cochlear implant technology. Otolaryngol Clin North Am. 2015;48(6):1097-116. http://dx.doi.org/10.1016/j. otc.2015.07.009. PMid:26443490.
2. Lund E. Vocabulary knowledge of children with cochlear implants: a meta-analysis. J Deaf Stud Deaf Educ. 2016;21(2):107-21. http://dx.doi. org/10.1093/deafed/env060. PMid:26712811.
3. Moberly AC, Bates C, Harris M, Pisoni D. The enigma of poor performance by adults with cochlear implants. Otol Neurotol. 2016;37(10):1522-8. http://dx.doi.org/10.1097/MAO.0000000000001211. PMid:27631833.
4. Erdem BK, Ciprut A. Evaluation of speech, spatial perception and hearing quality in unilateral, bimodal and bilateral cochlear implant users. Turk Arch Otorhinolaryngol. 2019;57(3):149-53. http://dx.doi.org/10.5152/ tao.2019.4105. PMid:31620697.
5. Skoe E, Kraus N. Auditory brain stem response to complex sounds: a tutorial. Ear Hear. 2010;31(3):302-24. http://dx.doi.org/10.1097/ AUD.0b013e3181cdb272. PMid:20084007.
6. Rocha-Muniz CN, Filippini R, Neves-Lobo IF, Rabelo CM, Morais AA, Murphy CFB, et al. O Potencial Evocado Auditivo com estímulo de fala pode ser uma ferramenta útil na prática clínica? CoDAS. 2016;28(1):77-80. http://dx.doi.org/10.1590/2317-1782/20162014231. PMid:27074194.
7. Durante AS, Oliveira SJ. Frequency-following response (FFR) com estímulo de fala em jovens adultos normo-ouvintes. CoDAS. 2020;32(3):e20180254. http://dx.doi.org/10.1590/2317-1782/20202018254. PMid:32578836.
8. Russo N, Nicol T, Musacchia G, Kraus N. Brainstem responses to speech syllables. Clin Neurophysiol. 2004;115(9):2021-30. http://dx.doi. org/10.1016/j.clinph.2004.04.003. PMid:15294204.
9. Kraus N, Anderson S, White-Schwoch T. The frequency-following response: a window into human communication. In: Kraus NT, editor. The frequencyfollowing response: a window into human communication. Cham: Springer; 2017. p. 1– 15. http://dx.doi.org/10.1007/978-3-319-47944-6_1.
10. Gabr TA, Hassaan MR. Speech processing in children with cochlear implant. Int J Pediatr Otorhinolaryngol. 2015;79(12):2028-34. http://dx.doi. org/10.1016/j.ijporl.2015.09.002. PMid:26421974.
11. Mourad M, Eid M, Elmongui H, Talaat M, Eldeeb M. Templates for speech-evoked auditory brainstem response performance in cochlear implantees. Adv Arab Acad Audio-Vestibulogy J. 2016;3(2):25-34. http:// dx.doi.org/10.4103/2314-8667.202551.
12. Rahman TTAR, Nada IMN, Kader HAAA, Monem AAA. Neural representation of speech in pediatric cochlear implant recipients. Egypt J Otolaryngol. 2017;33(2):535-45.
13. BinKhamis G, Perugia E, O’Driscoll M, Kluk K. Speech-ABRs in cochlear implant recipients: feasibility study. Int J Audiol. 2019;58(10):678-84. http://dx.doi.org/10.1080/14992027.2019.1619100. PMid:31132012.
14. Mc Laughlin M, Lopez Valdes A, Reilly RB, Zeng F-G. Cochlear implant artifact attenuation in late auditory evoked potentials: A single channel approach. Hear Res. 2013;302:84-95. http://dx.doi.org/10.1016/j. heares.2013.05.006. PMid:23727626.
15. Presacco A, Innes-Brown H, Goupell MJ, Anderson S. Effects of stimulus duration on event-related potentials recorded from cochlearimplant users. Ear Hear. 2017;38(6):e389-93. http://dx.doi.org/10.1097/ AUD.0000000000000444. PMid:28475545.
16. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. PMid:33782057.
17. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. JAMA. 2000;283(15):2008-12. http://dx.doi.org/10.1001/ jama.283.15.2008. PMid:10789670.
18. Foeckler P, Henning V, Reichelt J. Mendeley Desktop (version 1.19.8) [software]. Londres: Elsevier; 2021.
19. Moola S, Munn Z, Tufanaru C, Aromataris E, Sears K, Sfetcu R, et al. Chapter 7: Systematic reviews of etiology and risk. In: Aromataris E, Munn Z, editors. Joanna Briggs Institute manual for evidence synthesis. The Joanna Briggs Institute; 2020 [citado em 2020 jul 2]. Disponível em: https://synthesismanual.jbi.global. https://doi.org/10.46658/JBIMES-20-08
20. Kessler DM, Ananthakrishnan S, Smith SB, D’Onofrio K, Gifford RH. Frequency following response and speech recognition benefit for combining a cochlear implant and contralateral hearing aid. Trends Hear. 2020;24:1- 21. http://dx.doi.org/10.1177/2331216520902001. PMid:32003296.
21. Gabr TA, Serag SA. Speech auditory evoked potentials in cochlear implant recipients in relation to rehabilitation outcomes. Hear Balance Commun. 2018;16(4):255-62. http://dx.doi.org/10.1080/21695717.2018.1507577.
22. Jarollahi F, Valadbeigi A, Jalaei B, Maarefvand M, Zarandy MM, Haghani H, et al. Sound-field speech evoked auditory brainstem response in cochlear-implant recipients. J Audiol Otol. 2020;24(2):71-8. http://dx.doi. org/10.7874/jao.2019.00353. PMid:31852176.
23. Sanfins MD, Borges LR, Ubiali T, Donadon C, Diniz Hein TA, Hatzopoulos S, et al. Speech-evoked brainstem response in normal adolescent and children speakers of Brazilian Portuguese. Int J Pediatr Otorhinolaryngol. 2016;90:12-9. http://dx.doi.org/10.1016/j.ijporl.2016.08.024. PMid:27729117.
24. Vander Werff KR, Burns KS. Brain stem responses to speech in younger and older adults. Ear Hear. 2011;32(2):168-80. http://dx.doi.org/10.1097/ AUD.0b013e3181f534b5. PMid:21052004
25. Akhoun I, Moulin A, Jeanvoine A, Ménard M, Buret F, Vollaire C, et al. Speech auditory brainstem response (speech ABR) characteristics depending on recording conditions, and hearing status. J Neurosci Methods. 2008;175(2):196-205. http://dx.doi.org/10.1016/j.jneumeth.2008.07.026. PMid:18789971.
26. Francart T, Brokx J, Wouters J. Sensitivity to interaural time differences with combined cochlear implant and acoustic stimulation. J Assoc Res Otolaryngol. 2009;10(1):131-41. http://dx.doi.org/10.1007/s10162-008- 0145-8. PMid:19048344.
27. Coffey EBJ, Herholz SC, Chepesiuk AMP, Baillet S, Zatorre RJ. Cortical contributions to the auditory frequency-following response revealed by MEG. Nat Commun. 2016;7(1):11070. http://dx.doi.org/10.1038/ncomms11070. PMid:27009409.
28. Akhoun I, Gallégo S, Moulin A, Ménard M, Veuillet E, Berger-Vachon C, et al. The temporal relationship between speech auditory brainstem responses and the acoustic pattern of the phoneme /ba/ in normal-hearing adults. Clin Neurophysiol. 2008;119(4):922-33. http://dx.doi.org/10.1016/j. clinph.2007.12.010. PMid:18291717.
29. Friesen LM, Picton TW. A method for removing cochlear implant artifact. Hear Res. 2010;259(1–2):95-106. http://dx.doi.org/10.1016/j. heares.2009.10.012. PMid:19878712.
30. Krizman J, Skoe E, Kraus N. Stimulus rate and subcortical auditory processing of speech. Audiol Neurotol. 2010;15(5):332-42. http://dx.doi. org/10.1159/000289572. PMid:20215743.
31. Hofmann M, Wouters J. Electrically evoked auditory steady state responses in cochlear implant users. J Assoc Res Otolaryngol. 2010;11(2):267-82. http://dx.doi.org/10.1007/s10162-009-0201-z. PMid:20033246.
32. de Melo TM, Bevilacqua MC, Costa OA, Moret ALM. Influencia da estrategia de processamento de sinal no desempenho auditivo TT - Influence of signal processing strategy in auditory abilities. Rev Bras Otorrinolaringol (Engl Ed). 2013;79(5):629-35. http://dx.doi.org/10.5935/1808-8694.20130113