CoDAS
https://codas.org.br/article/doi/10.1590/2317-1782/20212021064
CoDAS
Artigo Original

Repetition of anchor stimuli and nature of vocal samples in the perceptual auditory judgment performed by speech-language pathology students

Repetição de estímulos âncoras e natureza das amostras vocais no julgamento perceptivo-auditivo realizado por estudantes de fonoaudiologia

Noemi de Oliveira Bispo; Rosiane Yamasaki; Marina Martins Pereira Padovani; Mara Behlau

Downloads: 0
Views: 605

Abstract

Purpose: Verify the effect of anchor repetition in the perceptual auditory judgement of the type of vocal deviation performed by speech-language pathology (SLP) students; analyze the correlation between the amount of different vocal dimensions in the same stimuli and accuracy; investigate the correlation between type of vocal deviation and accuracy. Methods: 54 SLP students were divided in two groups: Group with repetition (GwR), 28 students; and, Group with no repetition (GnR), 26 students. The analyzed sample counted with 220 dysphonic human voices, vowel /ε/. The GwR heard three anchor stimuli before the judgement and every 20 voices during the assessment. The GnR heard the anchor only before beginning the judgement. The anchor stimuli counted with one rough, one breathy and one strain voice. These classifications were compared with reference judgements from three expert SLPs. The intra and inter-rater reliability, the correlation between the amount of different vocal dimensions in the same stimuli and type of vocal deviation with accuracy were assessed. Results: The accuracy between type of deviation was similar among groups. The GwR presented slightly higher intra and inter-rater reliability. The student’s accuracy was inversely proportional to the amount of different vocal dimensions in the stimuli. Breathiness presented the highest accuracy and strain presented the lowest accuracy. Conclusion: The repetition of anchor stimuli improved intra and inter-rater reliability. However, it was not effective in the accuracy of the type of vocal deviation. The amount of different vocal dimensions in the stimuli have influence in the students’ accuracy

Keywords

Voice; Voice Disorders; Dysphonia; Voice Quality; Auditory Perception

Resumo

Objetivo: Verificar o efeito da repetição de estímulos âncoras no julgamento perceptivo auditivo do desvio vocal predominante realizado por estudantes de fonoaudiologia; analisar a relação entre o número de dimensões vocais dos estímulos sonoros e a acurácia; e investigar a relação entre o desvio vocal predominante e a acurácia. Método: Participaram da pesquisa 54 estudantes de fonoaudiologia, divididos em: Grupo Com Repetição - GCR com 28 alunos; e Grupo Sem Repetição - GSR, 26 alunos. A amostra vocal consistiu de 220 vozes humanas disfônicas, vogal /ε/. O GCR escutou três estímulos âncoras, uma voz rugosa, uma soprosa e uma tensa, no início da tarefa e a cada 20 vozes. O GSR escutou os estímulos âncoras somente no início da tarefa de avaliação. Estas classificações foram comparadas com respostas referências produzidas por 3 fonoaudiólogas experientes. Analisamos a acurácia e a confiabilidade intra e interavaliadores, a correlação entre número de dimensões vocais e acurácia e a relação entre desvio vocal predominante e acurácia. Resultados: Os grupos tiveram desempenhos semelhantes na acurácia do desvio vocal predominante. A confiabilidade intra e interavaliadores foi discretamente maior no GCR. A acurácia dos alunos foi inversamente proporcional ao número de dimensões vocais presentes nos estímulos. O desvio vocal de maior acurácia foi a soprosidade, e a de menor, a tensão. Conclusão: A repetição dos estímulos âncoras melhorou a confiabilidade dos estudantes, mas não se mostrou efetiva na acurácia da classificação do desvio vocal predominante. O número de dimensões vocais nos estímulos sonoros interferiu na acurácia dos alunos.

Palavras-chave

Voz; Distúrbios da voz; Disfonia; Qualidade da Voz; Percepção Auditiva

Referências

1. Oates J. Auditory-perceptual evaluation of disordered voice quality. Folia Phoniatr Logopp. 2009;61(1):49-56. http://dx.doi.org/10.1159/000200768. PMid:19204393.

2. Kreiman J, Gerratt BR, Kempster GB, Erman A, Berke GS. Perceptual evaluation of voice quality: review, tutorial, and a framework for future research. J Speech Hear Res. 1993;36(1):21-40. PMid:8450660.

3. Behlau M. The 2016 G. Paul Moore Lecture: Lessons in Voice Rehabilitation: Journal of Voice and Clinical Practice. J Voice. 2019;33(5):669-81. http:// dx.doi.org/10.1016/j.jvoice.2018.02.020. PMid:29567050.

4. Duffy JR. Motor speech disorders: substrates, differential diagnosis and management. 4th ed. USA: Elsevier: 2020.

5. Iwarsson J, Reinholt Petersen N. Effects of consensus training on the reliability of auditory perceptual ratings of voice quality. J Voice. 2012;26(3):304-12. http://dx.doi.org/10.1016/j.jvoice.2011.06.003. PMid:21840170.

6. Brinca L, Batista AP, Tavares AI, Pinto PN, Araújo L. The effect of anchors and training on the reliability of voice quality ratings for different types of speech stimuli. J Voice. 2015;29(6):776.e7-14. http://dx.doi.org/10.1016/j. jvoice.2015.01.007.

7. Barsties B, De Bodt M. Assessment of voice quality: current State-of-theart. Auris Nasus Larynx. 2015;42(3):183-8. http://dx.doi.org/10.1016/j. anl.2014.11.001. PMid:25440411.

8. Ghio A, Dufour S, Wengler A, Pouchoulin G, Revis J, Giovanni A. Perceptual evaluation of dysphonic voices: can a training protocol lead to the development of perceptual categories? J Voice. 2015;29(3):304-11. http://dx.doi.org/10.1016/j.jvoice.2014.07.006. PMid:25516201.

9. Zraick RI, Kempster GB, Connor NP, Thibeault S, Klaben BK, Bursac Z, et al. Establishing validity of the consensus auditory-perceptual evaluation of voice (CAPE-V). Am J Speech Lang Pathol. 2011;20(1):14-22. http:// dx.doi.org/10.1044/1058-0360(2010/09-0105). PMid:20739631.

10. Kreiman J, Gerratt BR, Ito M. When and why listeners disagree in voice quality assesment tasks. J Acoust Soc Am. 2007;122(4):2354-64. http:// dx.doi.org/10.1121/1.2770547. PMid:17902870.

11. Webb AL, Carding PN, Deary IJ, MacKenzie K, Steen N, Wilson JA. The reliability of three perceptual evaluation scales for dysphonia. Eur Arch Otorhinolaryngol. 2004;261(8):429-34. PMid:14615893.

12. Sauder C, Eadie T. Does the accuracy of medical diagnoses affect novice listeners’ auditory-perceptual judgments of dysphonia severity? J Voice. 2020;34(2):197-207. http://dx.doi.org/10.1016/j.jvoice.2018.08.001. PMid:30195410.

13. Patel RR, Awan SN, Barkmeier-Kraemer J, Courey M, Deliyski D, Eadie T, et al. Recommended protocols for instrumental assessment of voice: american speech-language-hearing association expert panel to develop a protocol for instrumental assessment of vocal function. Am J Speech Lang Pathol. 2018;27(3):887-905. http://dx.doi.org/10.1044/2018_AJSLP-17-0009. PMid:29955816.

14. Anand S, Skowronski MD, Shrivastav R, Eddins DA. Perceptual and quantitative assessment of dysphonia across vowel categories. J Voice. 2017;33(4):473-81. http://dx.doi.org/10.1016/j.jvoice.2017.12.018.

15. Eadie T, Kapsner-Smith M. The effect of listener experience and anchors on judgments of dysphonia. J Speech Lang Hear Res. 2011;54(2):430-47. http://dx.doi.org/10.1044/1092-4388(2010/09-0205). PMid:20884782.

16. Eadie T, Baylor CR. The effect of perceptual training on inexperienced listeners’ judgments of dysphonic voice. J Voice. 2006;20(4):527-44. http:// dx.doi.org/10.1016/j.jvoice.2005.08.007. PMid:16324823.

17. Solomon NP, Helou LB, Stojadinovic A. Clinical versus laboratory of voice using the CAPE-V. J Voice. 2011;25(1):e7-14. http://dx.doi.org/10.1016/j. jvoice.2009.10.007. PMid:20430573.

18. Gerratt BR, Kreiman J, Antonanzas-Barroso N, Berke GS. Comparing internal and external standards in voice quality judgments. J Speech Hear Res. 1993;36(1):14-20. http://dx.doi.org/10.1044/jshr.3601.14. PMid:8450655.

19. Pontes PAL, Vieira VP, Gonçalves MIR, Pontes AAL. Características de vozes roucas ásperas e normais: análise acústica espectrográfica comparativa. Rev Bras Otorronolaringol. 2002;68(2):182-8. http://dx.doi.org/10.1590/ S0034-72992002000200005.

20. Grill-Spector K, Henson R, Martin A. Repetition and the brain: neural models of stimulus-specific effects. Trends Cogn Sci. 2006;10(1):14-23. http://dx.doi.org/10.1016/j.tics.2005.11.006. PMid:16321563.

21. Bassich CJ, Ludlow CL. The use of perceptual methods by new clinicians for assessing voice quality. J Speech Hear Disord. 1986;51(2):125-33. http://dx.doi.org/10.1044/jshd.5102.125. PMid:3702360.

22. Genihú PFL, Gama ACC. Medidas acústicas e aerodinâmicas em cantores: comparação entre homens e mulheres. 2018;30(5):e20170240. https://doi. org/10.1590/2317-1782/20182017240.

23. Pacheco LRA, Madazio G, Yamasaki R, Behlau M, Gielow I. Simulation of auditory abilities and intra-rater reliability in auditory perceptual assessment of voices. Filadelfia, Estados Unidos: The Voice Foundation; 2019. Poster apresentado na The Voice Foundation.

24. Awan SN, Lawson LL. The effect of anchor modality on the reliability of vocal severity ratings. J Voice. 2009;23(3):341-52. http://dx.doi.org/10.1016/j. jvoice.2007.10.006. PMid:18346869.

25. Chan KMK, Yiu EM-L. The effect of anchors and training on the reliability of perceptual voice evaluation. J Speech Lang Hear Res. 2002;45(1):111- 26. http://dx.doi.org/10.1044/1092-4388(2002/009). PMid:14748643.

26. Santos PCM, Vieira MN, Sansão JPH, Gama ACC. Effect of auditoryperceptual training with natural voice anchors on vocal quality evaluation. J Voice. 2019;33(2):220-5. PMid:29331406. 27. Gurlekian JA, Torres HM, Vaccari ME. Comparison of two perceptual methods for the evaluation of vowel perturbation produced by jitter. J Voice. 2016;30(4):506.e1-8. http://dx.doi.org/10.1016/j.jvoice.2015.05.009. PMid:26106070.

28. Ylikoski J, Lehtosalo J. Neurochemical basis of auditory fatigue: a new hypothesis. Acta Otolaryngol. 2009;99(3-4):353-62. http://dx.doi. org/10.3109/00016488509108923. PMid:2409739.

29. Jain S, Nataraja NP. The effect of fatigue on working memory and auditory perceptual abilities in trained musicians. Am J Audiol. 2019;28(2S):483-94. http://dx.doi.org/10.1044/2019_AJA-IND50-18-0102. PMid:31461329.

30. Wang Y, Naylor G, Kramer SE, Zekveld AA, Wendt D, Ohlenforst B, et al. Relations between self-reported daily-life fatigue, hearing status, and pupil dilation during a speech perception in noise task. Ear Hear. 2018;39(3):573- 82. http://dx.doi.org/10.1097/AUD.0000000000000512. PMid:29117062.

621fd1f8a953953c5d0f6f34 codas Articles

CoDAS

Share this page
Page Sections