CoDAS
https://codas.org.br/article/doi/10.1590/2317-1782/20202020099
CoDAS
Artigo Original

Dimensões internas nasais de crianças com fissura labiopalatina e deficiência maxilar: comparação entre a técnica de rinometria acústica e a tomografia computadorizada de feixe cônico

Internal nasal dimensions of children with unilateral cleft lip and palate and maxillary atresia: comparison between acoustic rhinometry technique and cone-beam computed tomography

Caroline Akemi Hassegawa, Michele Alves Garcia-Usó, Marília Sakayo Yatabe-Ioshida, Inge Elly Kiemle Trindade, Ana Paula Fukushiro, Daniela Gamba Garib Carreira, Ivy Kiemle Trindade-Suedam

Downloads: 0
Views: 577

Resumo

Objetivo: Comparar a geometria da cavidade nasal de crianças e adolescentes com fissura labiopalatina e deficiência maxilar por meio de dois métodos: a tomografia computadorizada de feixe cônico, considerada padrão-ouro, e a rinometria acústica. Método: Foram avaliados, de maneira transversal, os exames de tomografia computadorizada de feixe cônico e de rinometria acústica, previamente obtidos para fins de planejamento ortodôntico, de 17 crianças e adolescentes com fissura labiopalatina e atresia maxilar. Por meio do programa Dolphin Imaging 11.8, a cavidade nasal das imagens tomográficas foi reconstruída por dois avaliadores e foram obtidos os volumes internos nasais. Por meio da rinometria, os volumes nasais foram aferidos para as regiões V1 e V2. Os valores de cada exame foram, então, comparados, a um nível de significância de 5%. Resultados: A análise estatística mostrou alta reprodutibilidade intra e interavaliadores na análise da tomografia computadorizada de feixe cônico. Os volumes internos nasais médios (± desvio-padrão), utilizando a rinometria acústica e a tomografia computadorizada de feixe cônico corresponderam a 6,6 ± 1,9 cm3 e 8,1 ± 1,5 cm3 , respectivamente. A diferença entre os exames foi de 17,7%, considerada estatisticamente significante (p = 0,006). Conclusão: Os volumes nasais aferidos pelos dois métodos são diferentes, ou seja, apresentam discrepâncias nas medidas. A técnica considerada padrão-ouro identificou volumes maiores na cavidade nasal. A determinação de qual exame reflete a realidade clínica constitui passo futuro importante.

Palavras-chave

Fissura Palatina; Cavidade Nasal; Rinometria Acústica; Tomografia Computadorizada de Feixe Cônico; Respiração

Abstract

Purpose: To compare the nasal cavity geometry of children and teenagers with cleft lip and palate and maxillary atresia by two methods: cone-beam computed tomography, considered the gold standard, and acoustic rhinometry. Methods: Data on cone-beam computed tomography and acoustic rhinometry examinations of 17 children and teenagers with cleft lip and palate and maxillary atresia, previously obtained for orthodontic planning purposes, were evaluated prospectively. Using Dolphin Imaging 11.8 software, the nasal cavity was reconstructed by two evaluators, and the internal nasal volumes were obtained. Using rhinometry, the volumes of regions V1 and V2 were measured. The values of each examination were then compared at a significance level of 5%. Results: Statistical analysis showed high intraand inter-rater reproducibility in the cone-beam computed tomography analysis. The mean internal nasal volumes (± standard deviation) obtained using acoustic rhinometry and cone-beam computed tomography corresponded to 6.6 ± 1.9 cm3 and 8.1 ± 1.5 cm3 , respectively. The difference between the examinations was 17.7%, which was considered statistically significant (p = 0.006). Conclusion: The nasal volumes measured via the two methods were different; that is, they presented discrepancies in the measurements. The gold standard technique identified larger volumes than acoustic rhinometry in the nasal cavity. Therefore, determining which test reflects clinical reality is an essential future step

Keywords

Cleft Palate; Nasal Cavity; Acoustic Rhinometry; Cone-Beam Computed Tomography; Respiration

Referências

1. Murray JC. Gene/environment causes of cleft lip and/or palate. Clin Genet. 2002;61(4):248-56. http://dx.doi.org/10.1034/j.1399-0004.2002.610402.x. PMid:12030886.

2. Freitas JAS, Neves LT, Almeida ALPF, Garib DG, Trindade-Suedam IK, Yaedú RYF, et al. Rehabilitative treatment of cleft lip and palate: experience of the Hospital for Rehabilitation of Craniofacial Anomalies/USP (HRAC/ USP) - Part 1: overall aspects. J Appl Oral Sci. 2012;20(1):9-15. http:// dx.doi.org/10.1590/S1678-77572012000100003. PMid:22437671.

3. Bertier CE, Trindade IEK, Silva Filho OG. Cirurgias primárias de lábio e palato. In: Trindade IE, Silva Filho OG. Fissuras labiopalatinas: uma abordagem Interdisciplinar. São Paulo: Ed. Santos; 2007. p. 73-86.

4. Bertier CE, Trindade IEK. Deformidades nasais: avaliação e tratamento cirúrgico. In: Trindade IE, Silva Filho OG. Fissuras labiopalatinas: uma abordagem Interdisciplinar. São Paulo: Ed. Santos; 2007. p. 87-107.

5. Freitas JAS, Trindade-Suedam IK, Garib DG, Neves LT, Almeida ALPF, Yaedú RYF, et al. Rehabilitative treatment of cleft lip and palate: experience of the Hospital for Rehabilitation of Craniofacial Anomalies/ USP (HRAC/USP) - Part 5: Institutional outcomes assessment and the role of the Laboratory of Physiology. J Appl Oral Sci. 2013;21(4):383-90. http://dx.doi.org/10.1590/1678-775720130290. PMid:24037080.

6. Farzal Z, Walsh J, Lopes de Rezende Barbosa G, Zdanski CJ, Davis SD, Superfine R, et al. Volumetric nasal cavity analysis in children with unilateral and bilateral cleft lip and palate. Laryngoscope. 2016;126(6):1475-80. http://dx.doi.org/10.1002/lary.25543. PMid:26267849.

7. Starbuck JM, Friel MT, Ghoneima A, Flores RL, Tholpady S, Kula K. Nasal airway and septal variation in unilateral and bilateral cleft lip and palate. Clin Anat. 2014;27(7):999-1008. http://dx.doi.org/10.1002/ca.22428. PMid:24976342.

8. Al-Fahdawi MA, Farid MM, El-Fotouh MA, El-Kassaby MA. Cone-beam computed tomography analysis of the nasopharyngeal airwayin nonsyndromic cleft lip and palate subjects. Cleft Palate Craniofac J. 2017;54(2):202-9. http://dx.doi.org/10.1597/15-134. PMid:26752132.

9. Trindade IE, Castilho RL, Sampaio-Teixeira AC, Trindade-Suedam IK, Silva Filho OG. Effects of orthopedic rapid maxillary expansion on internal nasal dimensions in children with cleft lip and palate assessed by acoustic rhinometry. J Craniofac Surg. 2010;21(2):306-11. http://dx.doi.org/10.1097/ SCS.0b013e3181cf5f5f. PMid:20186095.

10. Trindade-Suedam IK, Castilho RL, Sampaio-Teixeira AC, Araújo BM, Fukushiro AP, Campos LD, et al. Rapid maxillary expansion increases internal nasal dimensions of children with bilateral cleft lip and palate. Cleft Palate Craniofac J. 2016;53(3):272-7. http://dx.doi.org/10.1597/14- 244. PMid:25591126.

11. Chen H, van Eijnatten M, Wolff J, de Lange J, van der Stelt PF, Lobbezoo F, et al. Reliability and accuracy of three imaging software packages used for 3D analysis of the upper airway on cone beam computed tomography images. Dentomaxillofac Radiol. 2017;46(6):20170043. http://dx.doi. org/10.1259/dmfr.20170043. PMid:28467118.

12. Guijarro-Martínez R, Swennen GRJ. Cone-beam computerized tomography imaging and analysis of the upper airway: a systematic review of the literature. Int J Oral Maxillofac Surg. 2011;40(11):1227-37. http://dx.doi. org/10.1016/j.ijom.2011.06.017. PMid:21764260.

13. Ludlow JB, Davies-Ludlow LE, Brooks SL, Howerton B. Dosimetry of 3 CBCT devices for oral and maxillofacial radiology: CB Mercuray, NewTom 3G and i-CAT. Dentomaxillofac Radiol. 2006;35(4):219-26. http://dx.doi. org/10.1259/dmfr/14340323. PMid:16798915.

14. Hilberg O, Pedersen OF. Acoustic rhinometry: recommendations for technical specifications and standard operating procedures. Rhinol Suppl. 2000;16:3-17. PMid:11225287.

15. WHO: World Health Organization. Regional Working Group on Health Needs of Adolescents: Final Report. WHO Document ICP/MCH/005. Manila: World Organization, Regional Office for the Western Pacific; 1980.

16. Fleiss J. The design and analysis of clinical experiments. New York: Wiley; 1986.

17. Trindade-Suedam IK, Lima TF, Campos LD, Yaedú RY, Filho HN, Trindade IEK. Tomographic pharyngeal dimensions in individuals with unilateral cleft lip/palate and Class III malocclusion are reduced when compared with controls. Cleft Palate Craniofac J. 2017;54(5):502-8. http://dx.doi. org/10.1597/15-124. PMid:27148639.

18. Pinheiro ML, Yatabe M, Ioshida M, Orlandi L, Dumast P, Trindade-Suedam IK. Volumetric reconstruction and determination of minimum rosssectional area of the pharynx in patients with cleft lip and palate: comparison between two different softwares. J Appl Oral Sci. 2018;26(0):e20170282. http:// dx.doi.org/10.1590/1678-7757-2017-0282. PMid:30304121.

19. Yatabe-Ioshida MS, Campos LD, Yaedú RY, Trindade-Suedam IK. Upper Airway 3D Changes of patients with cleft lip and palate after orthognathic surgery. Cleft Palate Craniofac J. 2019;56(3):314-20. http://dx.doi. org/10.1177/1055665618778622. PMid:29846086.

20. Cakmak O, Tarhan E, Coskun M, Cankurtaran M, Çelik H. Acoustic rhinometry: accuracy and ability to detect changes in passage area at different locations in the nasal cavity. Ann Otol Rhinol Laryngol. 2005;114(12):949- 57. http://dx.doi.org/10.1177/000348940511401211. PMid:16425563.

21. Tsolakis IA, Venkat D, Hans MG, Alonso A, Palomo JM. When static meets dynamic: comparing cone-beam computed tomography and acoustic reflection for upper airway analysis. Am J Orthod Dentofacial Orthop. 2016;150(4):643-50. http://dx.doi.org/10.1016/j.ajodo.2016.03.024. PMid:27692422.

22. Gilain L, Coste A, Ricolfi F, Dahan E, Marliac D, Peynegre R, et al. Nasal cavity geometry measured by acoustic rhinometry and computed tomography. Arch Otolaryngol Head Neck Surg. 1997;123(4):401-5. http:// dx.doi.org/10.1001/archotol.1997.01900040037006. PMid:9109788.

23. Terheyden H, Maune S, Mertens J, Hilberg O. Acoustic rhinometry: Validation by Three-Dimensionally Reconstructed Computer Tomographic Scans. J Appl Physiol. 2000;89(3):1013-21. http://dx.doi.org/10.1152/ jappl.2000.89.3.1013. PMid:10956345.

24. Sakai RHUS, Marson FAL, Sakamura ETI, Ribeiro JD, Sakano E. Correlation between acoustic rhinometry, computed rhinomanometry and cone-beam computed tomography in mouth breathers with transverse maxillary deficiency. Rev Bras Otorrinolaringol (Engl Ed). 2018;84(1):40- 50. http://dx.doi.org/10.1016/j.bjorl.2016.10.015.

25. Weissheimer A, Menezes LM, Sameshima GT, Enciso R, Pham J, Grauer D. Imaging software accuracy for 3-dimensional analysis of the upper airway. Am J Orthod Dentofacial Orthop. 2012;142(6):801-13. http:// dx.doi.org/10.1016/j.ajodo.2012.07.015. PMid:23195366.


Submetido em:
17/04/2020

Aceito em:
24/06/2020

60ca0054a953957f1c59ce43 codas Articles
Links & Downloads

CoDAS

Share this page
Page Sections