CoDAS
https://codas.org.br/article/doi/10.1590/2317-1782/20202019197
CoDAS
Original Article

Efeito de emissões âncoras de vozes sintetizadas na avaliação perceptivo-auditiva da voz

Effect of synthesized voice anchors on auditory-perceptual voice evaluation

Priscila Campos Martins dos Santos, Maurílio Nunes Vieira, João Pedro Hallack Sansão, Ana Cristina Côrtes Gama

Downloads: 0
Views: 891

Resumo

Objetivo: Analisar se a utilização de emissões âncoras de vozes sintetizadas na avaliação perceptivo-auditiva melhora a concordância intra e interavaliador. Método: Trata-se de um estudo de natureza quantitativa. Foram selecionados 32 avaliadores inexperientes que realizaram, em um aplicativo criado pelos autores, duas atividades: Atividade Calibrador Ativo – avaliação perceptivo-auditiva dos parâmetros rugosidade e soprosidade como 0-ausência de desvio, 1-desvio leve, 2-desvio moderado ou 3-desvio intenso de 25 vozes com o apoio de emissões âncoras de vozes sintetizadas; e Atividade Calibrador Inativo – avaliação perceptivo-auditiva dessas mesmas vozes sem o apoio de emissões vocais âncoras. As vozes foram aleatorizadas em cada atividade, e a ordem de realização das atividades foi sorteada para cada avaliador, sendo que a segunda atividade foi realizada 15 dias após a primeira. Para análise da concordância intra e interavaliadores foi utilizado o coeficiente Kappa, e para comparação entre as concordâncias foi utilizado o intervalo de confiança (IC). Resultados: A concordância interavaliadores foi maior para o grau intenso do parâmetro soprosidade na Atividade Calibrador Ativo quando comparada à Atividade Calibrador Inativo, assim como a concordância intra-avaliadores do parâmetro rugosidade. Conclusão: O uso de emissões âncoras de vozes sintetizadas diretamente na avaliação melhora a concordância intra e interavaliadores na análise perceptivo-auditiva da voz.

Palavras-chave

Voz; Distúrbios da Voz; Qualidade da Voz; Disfonia; Percepção Auditiva; Treinamento da Voz

Abstract

Purpose: To analyze if the use of synthesized voice anchor emissions in auditory-perceptual evaluation improves intra- and inter-rater agreement. Methods: This is a quantitative study. Thirty-two inexperienced evaluators were selected and performed two activities on a Programming Interface created by the authors: Active Calibrator Activity — auditory-perceptual evaluation of the roughness and breathiness parameters as 0–no deviation, 1–slight deviation, 2–moderate deviation, or 3–intense deviation of 25 voices with the support of anchored emissions of synthesized voices; and Inactive Calibrator Activity — auditory-perceptual evaluation of these same voices without the support of anchored vocal emissions. The voices were randomized for each activity, and the order of the activities was drawn randomly for each evaluator. The second activity was performed 15 days after the first. The Kappa coefficient was used to analyze intra- and inter-rater agreement, and the confidence interval (CI) was employed to compare concordances. Results: Inter-rater agreement was higher for the intense degree of the breathiness parameter in the Active Calibrator Activity when compared to the Inactive Calibrator Activity, as well as the intra-rater agreement of the roughness parameter. Conclusion: Use of anchor emissions of synthesized voices directly in the evaluation improves intra- and inter-rater agreement in auditory-perceptual voice analysis.

Keywords

Voice; Voice Disorders; Voice Quality; Dysphonia; Auditory Perception; Voice Training

References

1. Oates J. Auditory-perceptual evaluation of disordered vocal quality: pros, cons and future directions. Folia Phoniatr Logop. 2009;61(1):49-56. http:// dx.doi.org/10.1159/000200768. PMid:19204393.

2. Behlau M. Voz: o livro do especialista. Vol. 1. Rio de Janeiro, RJ: Revinter; 2001.

3. Kreiman J, Gerratt BR, Ito M. When and why listeners disagree in voice quality assessment tasks. J Acoust Soc Am. 2007;122(4):2354-64. http:// dx.doi.org/10.1121/1.2770547. PMid:17902870.

4. Solomon NP, Helou LB, Stojadinovic A. Clinical versus laboratory ratings of voice using the CAPE-V. J Voice. 2011;25(1):e7-14. http://dx.doi. org/10.1016/j.jvoice.2009.10.007. PMid:20430573.

5. Chaves CR, Campbell M, Côrtes Gama AC. The influence of native language on auditory-perceptual evaluation of vocal samples completed by brazilian and Canadian SLPs. J Voice. 2017;31(2):258.e1-5. http://dx.doi. org/10.1016/j.jvoice.2016.05.021. PMid:27427162.

6. Chan KMK, Yiu EML. The effects of anchors and training on the reliability of perceptual voice evaluation. J Speech Lang Hear Res. 2002;45(1):111- 26. http://dx.doi.org/10.1044/1092-4388(2002/009). PMid:14748643.

7. Yiu EML, Murdoch B, Hird K, Lau P. Perception of synthesized voice quality in connected speech by Cantonese speakers. J Acoust Soc Am. 2002;112(3 Pt 1):1091-101. http://dx.doi.org/10.1121/1.1500753. PMid:12243157.

8. Chan KMK, Yiu EML. A comparison of two perceptual voice evaluation training programs for naive listeners. J Voice. 2006;20(2):229-41. http:// dx.doi.org/10.1016/j.jvoice.2005.03.007. PMid:16139475.

9. dos Santos PCM, Vieira MN, Sansão JPH, Gama ACC. Effect of auditoryperceptual training with natural voice anchors on vocal quality evaluation. J Voice. 2017;33(2):220-5. http://dx.doi.org/10.1016/j.jvoice.2017.10.020. PMid:29331406.

10. Awan SN, Lawson LL. The effect of anchor modality on the reliability of vocal severity ratings. J Voice. 2009;23(3):341-52. http://dx.doi.org/10.1016/j. jvoice.2007.10.006. PMid:18346869.

11. Eadie TL, Kapsner-Smith M. The effect of listener experience and anchors on judgments of dysphonia. J Speech Lang Hear Res. 2011;54(2):430-47. http://dx.doi.org/10.1044/1092-4388(2010/09- 0205). PMid:20884782.

12. Sofranko JL, Prosek RA. The effect of the levels and types of experience on judgment of synthesized voice quality. J Voice. 2014;28(1):24-35. http:// dx.doi.org/10.1016/j.jvoice.2013.06.001. PMid:24119637.

13. Eadie TL, Baylor CR. The effect of perceptual training on inexperienced listeners’ judgments of dysphonic voice. J Voice. 2006;20(4):527-44. http:// dx.doi.org/10.1016/j.jvoice.2005.08.007. PMid:16324823.

14. Gurlekian JA, Torre HM, Vaccari ME. Comparison of two perceptual methods for the evaluation of vowel perturbation produced by jitter. J Voice. 2016;30(4):506.E1-8. http://dx.doi.org/10.1016/j.jvoice.2015.05.009. PMID: 26106070.

15. Gerratt BR, Kreiman J, Antonanzas-Barroso N, Berke GS. Comparing internal and external standards in voice quality judgments. J Speech Hear Res. 1993;36(1):14-20. http://dx.doi.org/10.1044/jshr.3601.14. PMid:8450655.

16. Goldstone RL. Perceptual learning. Annu Rev Psychol. 1998;49(1):585- 612. http://dx.doi.org/10.1146/annurev.psych.49.1.585. PMid:9496632.

17. Hirano M. Clinical examination of voice. New York: Springer Verlag; 1981.

18. Helou LB, Solomon NP, Henry LR, Coppit GL, Howard RS, Stojadinovic A. The role of listener experience on Consensus Auditory-Perceptual Evaluation of Voice (CAPE-V) ratings of postthyroidectomy voice. Am J Speech Lang Pathol. 2010;19(3):248-58. http://dx.doi.org/10.1044/1058- 0360(2010/09-0012). PMid:20484704.

19. Silva RSA, Simões-Zenari M, Nemr NK. Impacto de treinamento auditivo na avaliação perceptivo-auditiva da voz realizada por estudantes de Fonoaudiologia. J Soc Bras Fonoaudiol. 2012;24(1):19-25. http://dx.doi. org/10.1590/S2179-64912012000100005. PMid:22460368.

20. Brinca L, Batista AP, Tavares AI, Pinto PN, Araújo L. The effect of anchors and training on the reliability of voice quality ratings for different types of speech stimuli. J Voice. 2015;29(6):776.e7-14. http://dx.doi.org/10.1016/j. jvoice.2015.01.007. PMid:25795348.

21. Vieira MN, Sansão JPH, Yehia HC. Measurement of signal-to-noise ratio in dysphonic voices by image processing of spectrograms. Speech Communication. 2014;61-62:17-32. http://dx.doi.org/10.1016/j.specom.2014.04.001.

22. Baravieira PB, Brasolotto AG, Montagnoli AN, Silvério KCA, Yamasaki R, Behlau M. Análise perceptivo-auditiva de vozes rugosas e soprosas: correspondência entre a escala visual analógica e a escala numérica. CoDAS. 2016;28(2):163-7. http://dx.doi.org/10.1590/2317-1782/20162015098. PMid:27191880.

23. Kreiman J, Gerratt BR, Kempster GB, Erman A, Berke GS. Perceptual evaluation of voice quality: review, tutorial, and a framework for future research. J Speech Hear Res. 1993;36(1):21-40. http://dx.doi.org/10.1044/ jshr.3601.21. PMid:8450660.

24. Englert M, Madazio G, Gielow I, Lucero J, Behlau M. Perceptual error identification of human and synthesized voices. J Voice. 2016;30(5):639. e17-23. http://dx.doi.org/10.1016/j.jvoice.2015.07.017. PMid:26337775.

25. Eadie T, Sroka A, Wright DR, Merati A. Does knowledge of medical diagnosis bias auditory-perceptual judgments of dysphonia? J Voice. 2011;25(4):420- 9. http://dx.doi.org/10.1016/j.jvoice.2009.12.009. PMid:20347262.

26. Law T, Kim JH, Lee KY, Tang EC, Lam JH, van Hasselt AC, et al. Comparison of Rater’s reliability on perceptual evaluation of different types of voice sample. J Voice. 2012;26(5):666.e13-21. http://dx.doi. org/10.1016/j.jvoice.2011.08.003. PMid:22243971.

27. Altman DG. Some common problems in medical research. In: Altman DG. Practical statistics for medical research. London: Chapman and Hall; 1991.

28. Oliveira SB, Gama ACC, Chaves AR. Interferência do tempo de experiência na concordância da análise perceptivo-auditiva de vozes. Distúrb Comun. 2016;28(3):415-22.

29. Englert M, Madazio G, Gielow I, Lucero J, Behlau M. Perceptual error analysis of human an synthesized voices. J Voice. 2016;31(4): 516.E5-18. https://doi.org/10.1016/j.jvoice.2016.12.015.

30. Englert M, Madazio G, Gielow I, Lucero J, Behlau M. Influência do fator de aprendizagem na análise perceptivo-auditiva. CoDAS. 2018;30(3):e20170107. http://dx.doi.org/10.1590/2317-1782/20182017107. PMid:29898037.


Submitted date:
08/18/2019

Accepted date:
03/25/2020

60c507eba95395409c749814 codas Articles

CoDAS

Share this page
Page Sections